Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 183: 314-324, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27604755

RESUMEN

Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change.


Asunto(s)
Cambio Climático , Urbanización , Chile , Ciudades , Planificación de Ciudades , Conservación de los Recursos Naturales , Modelos Teóricos
2.
Sci Total Environ ; 576: 508-519, 2017 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-27810740

RESUMEN

Even though most cities are exposed to more than one hazard, local planners and decision-makers still have a limited understanding of the exposure and sensitivity to and the spatial distribution of hazards. We examine the impact of multiple hazards in the Concepción Metropolitan Area (CMA), Chile. A flexible methodology based on spatial fuzzy logic modelling was developed to explore the impact of weather-related hazards, including coastal flooding, fluvial flooding, water scarcity, heat stress, and wildfire. 32 indicators were standardised and then aggregated through a stepwise approach into a multi-hazard impact index. We find that all the municipalities in the CMA increased their level of impact between 1992 and 2002, due to a larger increase in the exposure rather than the modest decrease in sensitivity. Municipal sensitivity was driven mostly by changes in the population's age structure. Wildfires and water scarcity appeared to have the largest impact on all municipalities. Fuzzy modelling offered high flexibility in the standardisation and aggregation of indicators with diverse characteristics, while also providing a means to explore how the interaction of numerous indicators influenced the index. The resulting maps can help identify indicators, components, and hazards or combinations of hazards that most influence the impact on municipalities. The results can be used to improve and promote dialogue among policy-makers and stakeholders regarding prioritisation of resources for urban development in ways that can also reduce exposure and sensitivity and lower vulnerability to climate change. The methods presented can be adapted to other cities.

3.
Mar Biol ; 163: 173, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27512234

RESUMEN

Marine invasive non-native species (NNS) are one of the greatest threats to global marine biodiversity, causing significant economic and social impacts. Marinas are increasingly recognised as key reservoirs for invasive NNS. They provide submersed artificial habitat that unintentionally supports the establishment of NNS introduced from visiting recreational vessels. While ballast water and shipping vectors have been well documented, the role of recreational vessels in spreading NNS has been relatively poorly studied. Identification of the main physical features found within marinas, which relate to the presence of NNS, is important to inform the development of effective biosecurity measures and prevent further spread. Towards this aim, physical features that could influence the presence of NNS were assessed for marinas throughout the UK in July 2013. Thirty-three marine and brackish NNS have been recorded in UK marinas, and of the 88 marinas studied in detail, 83 contained between 1 and 13 NNS. Significant differences in freshwater input, marina entrance width and seawall length were associated with the presence of NNS. Additionally, questionnaires were distributed to marina managers and recreational vessel owners to understand current biosecurity practices and attitudes to recreational vessel biosecurity. The main barriers to biosecurity compliance were cited as cost and time. Further work identifying easily distinguished features of marinas could be used as a proxy to assess risk of invasion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA