Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Cell ; 171(6): 1301-1315.e14, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195074

RESUMEN

The two oncogenes KRas and Myc cooperate to drive tumorigenesis, but the mechanism underlying this remains unclear. In a mouse lung model of KRasG12D-driven adenomas, we find that co-activation of Myc drives the immediate transition to highly proliferative and invasive adenocarcinomas marked by highly inflammatory, angiogenic, and immune-suppressed stroma. We identify epithelial-derived signaling molecules CCL9 and IL-23 as the principal instructing signals for stromal reprogramming. CCL9 mediates recruitment of macrophages, angiogenesis, and PD-L1-dependent expulsion of T and B cells. IL-23 orchestrates exclusion of adaptive T and B cells and innate immune NK cells. Co-blockade of both CCL9 and IL-23 abrogates Myc-induced tumor progression. Subsequent deactivation of Myc in established adenocarcinomas triggers immediate reversal of all stromal changes and tumor regression, which are independent of CD4+CD8+ T cells but substantially dependent on returning NK cells. We show that Myc extensively programs an immune suppressive stroma that is obligatory for tumor progression.


Asunto(s)
Adenocarcinoma/inmunología , Adenoma/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Adenoma/genética , Adenoma/patología , Animales , Carcinogénesis , Quimiocinas CC/inmunología , Modelos Animales de Enfermedad , Femenino , Inflamación/inmunología , Inflamación/metabolismo , Interleucina-23/inmunología , Neoplasias Pulmonares/patología , Proteínas Inflamatorias de Macrófagos/inmunología , Macrófagos/inmunología , Masculino , Ratones , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 116(44): 22399-22408, 2019 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-31611367

RESUMEN

Cells with higher levels of Myc proliferate more rapidly and supercompetitively eliminate neighboring cells. Nonetheless, tumor cells in aggressive breast cancers typically exhibit significant and stable heterogeneity in their Myc levels, which correlates with refractoriness to therapy and poor prognosis. This suggests that Myc heterogeneity confers some selective advantage on breast tumor growth and progression. To investigate this, we created a traceable MMTV-Wnt1-driven in vivo chimeric mammary tumor model comprising an admixture of low-Myc- and reversibly switchable high-Myc-expressing clones. We show that such tumors exhibit interclonal mutualism wherein cells with high-Myc expression facilitate tumor growth by promoting protumorigenic stroma yet concomitantly suppress Wnt expression, which renders them dependent for survival on paracrine Wnt provided by low-Myc-expressing clones. To identify any therapeutic vulnerabilities arising from such interdependency, we modeled Myc/Ras/p53/Wnt signaling cross talk as an executable network for low-Myc, for high-Myc clones, and for the 2 together. This executable mechanistic model replicated the observed interdependence of high-Myc and low-Myc clones and predicted a pharmacological vulnerability to coinhibition of COX2 and MEK. This was confirmed experimentally. Our study illustrates the power of executable models in elucidating mechanisms driving tumor heterogeneity and offers an innovative strategy for identifying combination therapies tailored to the oligoclonal landscape of heterogenous tumors.


Asunto(s)
Heterogeneidad Genética , Neoplasias Mamarias Experimentales/genética , Modelos Teóricos , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Resistencia a Antineoplásicos , Femenino , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Vía de Señalización Wnt , Proteínas ras/genética , Proteínas ras/metabolismo
3.
J Lipid Res ; 61(11): 1390-1399, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32753459

RESUMEN

Nonsmall cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. While mutations in Kras and overexpression of Myc are commonly found in patients, the role of altered lipid metabolism in lung cancer and its interplay with oncogenic Myc is poorly understood. Here we use a transgenic mouse model of Kras-driven lung adenocarcinoma with reversible activation of Myc combined with surface analysis lipid profiling of lung tumors and transcriptomics to study the effect of Myc activity on cholesterol homeostasis. Our findings reveal that the activation of Myc leads to the accumulation of cholesteryl esters (CEs) stored in lipid droplets. Subsequent Myc deactivation leads to further increases in CEs, in contrast to tumors in which Myc was never activated. Gene expression analysis linked cholesterol transport and storage pathways to Myc activity. Our results suggest that increased Myc activity is associated with increased cholesterol influx, reduced efflux, and accumulation of CE-rich lipid droplets in lung tumors. Targeting cholesterol homeostasis is proposed as a promising avenue to explore for novel treatments of lung cancer, with diagnostic and stratification potential in human NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Colesterol/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Transporte Biológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Ratones , Ratones Transgénicos
4.
EMBO J ; 31(11): 2486-97, 2012 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-22510880

RESUMEN

Genetic screens in simple model organisms have identified many of the key components of the conserved signal transduction pathways that are oncogenic when misregulated. Here, we identify H37N21.1 as a gene that regulates vulval induction in let-60(n1046gf), a strain with a gain-of-function mutation in the Caenorhabditis elegans Ras orthologue, and show that somatic deletion of Nrbp1, the mouse orthologue of this gene, results in an intestinal progenitor cell phenotype that leads to profound changes in the proliferation and differentiation of all intestinal cell lineages. We show that Nrbp1 interacts with key components of the ubiquitination machinery and that loss of Nrbp1 in the intestine results in the accumulation of Sall4, a key mediator of stem cell fate, and of Tsc22d2. We also reveal that somatic loss of Nrbp1 results in tumourigenesis, with haematological and intestinal tumours predominating, and that nuclear receptor binding protein 1 (NRBP1) is downregulated in a range of human tumours, where low expression correlates with a poor prognosis. Thus NRBP1 is a conserved regulator of cell fate, that plays an important role in tumour suppression.


Asunto(s)
Homeostasis/fisiología , Intestinos/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Células Madre/fisiología , Proteínas Supresoras de Tumor/genética , Proteínas de Transporte Vesicular/fisiología , Animales , Proteínas Portadoras/análisis , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Proteínas de Unión al ADN/análisis , Femenino , Eliminación de Gen , Humanos , Intestinos/citología , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Oxidorreductasas , Pronóstico , Receptores Citoplasmáticos y Nucleares/genética , Células Madre/citología , Factores de Transcripción/análisis , Proteínas Supresoras de Tumor/fisiología , Ubiquitinación/genética , Ubiquitinación/fisiología , Proteínas de Transporte Vesicular/genética
5.
Front Cell Dev Biol ; 12: 1357589, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38577503

RESUMEN

The Myc family of proto-oncogenes is a key node for the signal transduction of external pro-proliferative signals to the cellular processes required for development, tissue homoeostasis maintenance, and regeneration across evolution. The tight regulation of Myc synthesis and activity is essential for restricting its oncogenic potential. In this review, we highlight the central role that Myc plays in regeneration across the animal kingdom (from Cnidaria to echinoderms to Chordata) and how Myc could be employed to unlock the regenerative potential of non-regenerative tissues in humans for therapeutic purposes. Mastering the fine balance of harnessing the ability of Myc to promote transcription without triggering oncogenesis may open the door to many exciting opportunities for therapeutic development across a wide array of diseases.

6.
Pain ; 165(7): 1592-1604, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38293826

RESUMEN

ABSTRACT: Visceral pain is a leading cause of morbidity in inflammatory bowel disease (IBD), contributing significantly to reduced quality of life. Currently available analgesics often lack efficacy or have intolerable side effects, driving the need for a more complete understanding of the mechanisms causing pain. Whole transcriptome gene expression analysis was performed by bulk RNA sequencing of colonic biopsies from patients with ulcerative colitis (UC) and Crohn's disease (CD) reporting abdominal pain and compared with noninflamed control biopsies. Potential pronociceptive mediators were identified based on gene upregulation in IBD biopsy tissue and cognate receptor expression in murine colonic sensory neurons. Pronociceptive activity of identified mediators was assessed in assays of sensory neuron and colonic afferent activity. RNA sequencing analysis highlighted a 7.6-fold increase in the expression of angiotensinogen transcripts, Agt , which encode the precursor to angiotensin II (Ang II), in samples from UC patients ( P = 3.2 × 10 -8 ). Consistent with the marked expression of the angiotensin AT 1 receptor in colonic sensory neurons, Ang II elicited an increase in intracellular Ca 2+ in capsaicin-sensitive, voltage-gated sodium channel subtype Na V 1.8-positive sensory neurons. Ang II also evoked action potential discharge in high-threshold colonic nociceptors. These effects were inhibited by the AT 1 receptor antagonist valsartan. Findings from our study identify AT 1 receptor-mediated colonic nociceptor activation as a novel pathway of visceral nociception in patients with UC. This work highlights the potential utility of angiotensin receptor blockers, such as valsartan, as treatments for pain in IBD.


Asunto(s)
Angiotensina II , Perfilación de la Expresión Génica , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Ratones , Masculino , Femenino , Colon/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Adulto , Persona de Mediana Edad , Ratones Endogámicos C57BL , Nociceptores/metabolismo , Transcriptoma
7.
Biochem Soc Trans ; 41(4): 1055-60, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23863178

RESUMEN

Pseudokinases are a class of kinases which are structurally designated as lacking kinase activity. Despite the lack of kinase domain sequence conservation, there is increasing evidence that a number of pseudokinases retain kinase activity and/or have critical cellular functions, casting aside previous notions that pseudokinases simply exist as redundant kinases. Moreover, a number of recent studies have implicated pseudokinases as critical components in cancer formation and progression. The present review discusses the interactions and potential functions that nuclear receptor-binding protein 1, a pseudokinase recently described to have a tumour-suppressive role in cancer, may play in cellular homoeostasis and protein regulation. The recent findings highlighted in the present review emphasize the requirement to fully determine the function of pseudokinases in vitro and in vivo, the understanding of which may ultimately uncover new directions for drug discovery.


Asunto(s)
Genes Supresores de Tumor , Proteínas Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Neoplasias/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Homología de Secuencia de Aminoácido , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
8.
Proc Natl Acad Sci U S A ; 107(34): 15145-50, 2010 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-20696900

RESUMEN

In 100 primary colorectal carcinomas, we demonstrate by array comparative genomic hybridization (aCGH) that 33% show DNA copy number (DCN) loss involving PARK2, the gene encoding PARKIN, the E3 ubiquitin ligase whose deficiency is responsible for a form of autosomal recessive juvenile parkinsonism. PARK2 is located on chromosome 6 (at 6q25-27), a chromosome with one of the lowest overall frequencies of DNA copy number alterations recorded in colorectal cancers. The PARK2 deletions are mostly focal (31% approximately 0.5 Mb on average), heterozygous, and show maximum incidence in exons 3 and 4. As PARK2 lies within FRA6E, a large common fragile site, it has been argued that the observed DCN losses in PARK2 in cancer may represent merely the result of enforced replication of locally vulnerable DNA. However, we show that deficiency in expression of PARK2 is significantly associated with adenomatous polyposis coli (APC) deficiency in human colorectal cancer. Evidence of some PARK2 mutations and promoter hypermethylation is described. PARK2 overexpression inhibits cell proliferation in vitro. Moreover, interbreeding of Park2 heterozygous knockout mice with Apc(Min) mice resulted in a dramatic acceleration of intestinal adenoma development and increased polyp multiplicity. We conclude that PARK2 is a tumor suppressor gene whose haploinsufficiency cooperates with mutant APC in colorectal carcinogenesis.


Asunto(s)
Poliposis Adenomatosa del Colon/genética , Neoplasias Colorrectales/genética , Eliminación de Gen , Dosificación de Gen , Genes APC , Ubiquitina-Proteína Ligasas/genética , Poliposis Adenomatosa del Colon/etiología , Poliposis Adenomatosa del Colon/metabolismo , Poliposis Adenomatosa del Colon/patología , Animales , Secuencia de Bases , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 6/genética , Cocarcinogénesis , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Metilación de ADN , Cartilla de ADN/genética , ADN de Neoplasias/química , ADN de Neoplasias/genética , Genes Supresores de Tumor , Heterocigoto , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Mutantes , Modelos Moleculares , Mutación , Cariotipificación Espectral , Ubiquitina-Proteína Ligasas/química
9.
Transl Psychiatry ; 12(1): 121, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338122

RESUMEN

There has recently been marked progress in identifying genetic risk factors for major depression (MD) and bipolar disorder (BD); however, few systematic efforts have been made to elucidate heterogeneity that exists within and across these diagnostic taxa. The Affective disorders, Environment, and Cognitive Trait (AFFECT) study presents an opportunity to identify and associate the structure of cognition and symptom-level domains across the mood disorder spectrum in a prospective study from a diverse US population.Participants were recruited from the 23andMe, Inc research participant database and through social media; self-reported diagnosis of MD or BD by a medical professional and medication status data were used to enrich for mood-disorder cases. Remote assessments were used to acquire an extensive range of phenotypes, including mood state, transdiagnostic symptom severity, task-based measures of cognition, environmental exposures, personality traits. In this paper we describe the study design, and the demographic and clinical characteristics of the cohort. In addition we report genetic ancestry, SNP heritability, and genetic correlations with other large cohorts of mood disorders.A total of 48,467 participants were enrolled: 14,768 with MD, 9864 with BD, and 23,835 controls. Upon enrollment, 47% of participants with MD and 27% with BD indicated being in an active mood episode. Cases reported early ages of onset (mean = 13.2 and 14.3 years for MD and BD, respectively), and high levels of recurrence (78.6% and 84.9% with >5 episodes), psychotherapy, and psychotropic medication use. SNP heritability on the liability scale for the ascertained MD participants (0.19-0.21) was consistent with the high level of disease severity in this cohort, while BD heritability estimates (0.16-0.22) were comparable to reports in other large scale genomic studies of mood disorders. Genetic correlations between the AFFECT cohort and other large-scale cohorts were high for MD but not for BD. By incorporating transdiagnostic symptom assessments, repeated measures, and genomic data, the AFFECT study represents a unique resource for dissecting the structure of mood disorders across multiple levels of analysis. In addition, the fully remote nature of the study provides valuable insights for future virtual and decentralized clinical trials within mood disorders.


Asunto(s)
Trastorno Bipolar , Trastorno Depresivo Mayor , Afecto , Trastorno Bipolar/psicología , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/psicología , Humanos , Trastornos del Humor/diagnóstico , Trastornos del Humor/genética , Estudios Prospectivos
10.
Front Cardiovasc Med ; 9: 948281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337898

RESUMEN

Aim: Adult mammalian cardiomyocytes are incapable of significant proliferation, limiting regeneration after myocardial injury. Overexpression of the transcription factor Myc has been shown to drive proliferation in the adult mouse heart, but only when combined with Cyclin T1. As constitutive HRas activity has been shown to stabilise Cyclin T1 in vivo, we aimed to establish whether Myc and HRas could also act cooperatively to induce proliferation in adult mammalian cardiomyocytes in vivo. Methods and results: Using a genetically modified mouse model, we confirmed that constitutive HRas activity (HRas G 12 V ) increased Cyclin T1 expression. HRas G 12 V and constitutive Myc expression together co-operate to drive cell-cycle progression of adult mammalian cardiomyocytes. However, stimulation of endogenous cardiac proliferation by the ectopic expression of HRas G 12 V and Myc also induced cardiomyocyte death, while Myc and Cyclin T1 expression did not. Conclusion: Co-expression of Cyclin T1 and Myc may be a therapeutically tractable approach for cardiomyocyte neo-genesis post injury, while cell death induced by HRas G 12 V and Myc expression likely limits this option as a regenerative therapeutic target.

11.
Nat Commun ; 12(1): 160, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420020

RESUMEN

We trained and validated risk prediction models for the three major types of skin cancer- basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and melanoma-on a cross-sectional and longitudinal dataset of 210,000 consented research participants who responded to an online survey covering personal and family history of skin cancer, skin susceptibility, and UV exposure. We developed a primary disease risk score (DRS) that combined all 32 identified genetic and non-genetic risk factors. Top percentile DRS was associated with an up to 13-fold increase (odds ratio per standard deviation increase >2.5) in the risk of developing skin cancer relative to the middle DRS percentile. To derive lifetime risk trajectories for the three skin cancers, we developed a second and age independent disease score, called DRSA. Using incident cases, we demonstrated that DRSA could be used in early detection programs for identifying high risk asymptotic individuals, and predicting when they are likely to develop skin cancer. High DRSA scores were not only associated with earlier disease diagnosis (by up to 14 years), but also with more severe and recurrent forms of skin cancer.


Asunto(s)
Carcinoma Basocelular/epidemiología , Carcinoma de Células Escamosas/epidemiología , Melanoma/epidemiología , Modelos Estadísticos , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Cutáneas/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma Basocelular/etiología , Carcinoma Basocelular/patología , Carcinoma de Células Escamosas/etiología , Estudios Transversales , Conjuntos de Datos como Asunto , Pruebas Dirigidas al Consumidor/estadística & datos numéricos , Femenino , Estudios de Seguimiento , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Incidencia , Estudios Longitudinales , Masculino , Anamnesis , Melanoma/etiología , Melanoma/patología , Persona de Mediana Edad , Recurrencia Local de Neoplasia/etiología , Recurrencia Local de Neoplasia/patología , Oportunidad Relativa , Estudios Prospectivos , Medición de Riesgo/métodos , Factores de Riesgo , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Encuestas y Cuestionarios/estadística & datos numéricos , Rayos Ultravioleta/efectos adversos , Población Blanca/genética
12.
Mol Genet Genomic Med ; 8(11): e1468, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32940023

RESUMEN

BACKGROUND: Clinical genetic testing for inherited predisposition to venous thromboembolism (VTE) is common among patients and their families. However, there is incomplete consensus about which individuals should receive testing, and the relative risks and benefits. METHODS: We assessed outcomes of receiving direct-to-consumer (DTC) results for the two most common genetic risk factors for VTE, factor V Leiden in the F5 gene (FVL) and prothrombin 20210G>A in the F2 gene (PT). Two thousand three hundred fifty-four customers (1244 variant-positive and 1110 variant-negative individuals) of the personal genetics company 23andMe, Inc., who had received results online for F5 and F2 variants, participated in an online survey-based study. Participants responded to questions about perception of VTE risk, discussion of results with healthcare providers (HCPs) and recommendations received, actions taken to control risk, emotional responses to receiving risk results, and perceived value of the information. RESULTS: Most participants (90% of variant-positive individuals, 99% of variant-negative individuals) had not previously been tested for F5 and/or F2 variants. The majority of variant-positive individuals correctly perceived that they were at higher than average risk for developing VTE. These individuals reported moderate rates of discussing results with HCPs (41%); receiving prevention advice from HCPs (31%), and making behavioral changes to control risk (e.g., exercising more, 30%). A minority (36%) of variant-positive individuals worried more after receiving VTE results. Nevertheless, most participants reported that knowing their risk had been an advantage (78% variant-positive and 58% variant-negative) and were satisfied knowing their genetic probability for VTE (81% variant-positive and 67% variant-negative). CONCLUSION: Consumers reported moderate rates of behavioral change and perceived personal benefit from receiving DTC genetic results for VTE risk.


Asunto(s)
Actitud , Pruebas Dirigidas al Consumidor/psicología , Factor V/genética , Pruebas Genéticas/estadística & datos numéricos , Protrombina/genética , Adulto , Pruebas Dirigidas al Consumidor/estadística & datos numéricos , Femenino , Frecuencia de los Genes , Conductas Relacionadas con la Salud , Heterocigoto , Humanos , Masculino , Pacientes/psicología
13.
Nat Commun ; 11(1): 1827, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286286

RESUMEN

It is unclear why some tissues are refractory to the mitogenic effects of the oncogene Myc. Here we show that Myc activation induces rapid transcriptional responses followed by proliferation in some, but not all, organs. Despite such disparities in proliferative response, Myc is bound to DNA at open elements in responsive (liver) and non-responsive (heart) tissues, but fails to induce a robust transcriptional and proliferative response in the heart. Using heart as an exemplar of a non-responsive tissue, we show that Myc-driven transcription is re-engaged in mature cardiomyocytes by elevating levels of the positive transcription elongation factor (P-TEFb), instating a large proliferative response. Hence, P-TEFb activity is a key limiting determinant of whether the heart is permissive for Myc transcriptional activation. These data provide a greater understanding of how Myc transcriptional activity is determined and indicate modification of P-TEFb levels could be utilised to drive regeneration of adult cardiomyocytes for the treatment of heart myopathies.


Asunto(s)
Miocardio/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Transcripción Genética , Animales , Proliferación Celular/genética , Cromatina/metabolismo , Ciclina T/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Especificidad de Órganos , Fosforilación , Factor B de Elongación Transcripcional Positiva/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , Activación Transcripcional/genética
14.
Sci Rep ; 7(1): 9932, 2017 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-28855541

RESUMEN

While genetically engineered mice have made an enormous contribution towards the elucidation of human disease, it has hitherto not been possible to tune up or down the level of expression of any endogenous gene. Here we describe compound genetically modified mice in which expression of the endogenous E2f3 gene may be either reversibly elevated or repressed in adult animals by oral administration of tetracycline. This technology is, in principle, applicable to any endogenous gene, allowing direct determination of both elevated and reduced gene expression in physiological and pathological processes. Applying this switchable technology to the key cell cycle transcription factor E2F3, we demonstrate that elevated levels of E2F3 drive ectopic proliferation in multiple tissues. By contrast, E2F3 repression has minimal impact on tissue proliferation or homeostasis in the majority of contexts due to redundancy of adult function with E2F1 and E2F2. In the absence of E2F1 and E2F2, however, repression of E2F3 elicits profound reduction of proliferation in the hematopoietic compartments that is rapidly lethal in adult animals.


Asunto(s)
Factor de Transcripción E2F3/genética , Ingeniería Genética/métodos , Tetraciclina/administración & dosificación , Animales , Proliferación Celular , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Regiones Promotoras Genéticas , Tetraciclina/farmacología , Regulación hacia Arriba
15.
J Invest Dermatol ; 126(2): 497-502, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16374449

RESUMEN

The expression of different keratin intermediate filaments has been used to define keratinocyte maturation and different phenotypic subtypes involved in acute wound (AW) healing. Immunohistochemistry with specific anti-keratin monoclonal and polyclonal antibodies was used to examine AW in normal healthy volunteers (n = 16). In all wounds examined, basal keratinocytes and cells at the leading edge of the wound expressed keratins K5 and K14. However, suprabasal cells had a more complex pattern of keratin expression, which was dependent on their position relative to the wound and location within the suprabasal compartment of the epidermis. In general, K10 was expressed in suprabasal keratinocytes at the wound edge, but not in keratinocytes covering the wound center, which expressed K6, K16, and K17 in a complex fashion. Ki67 expression, a marker of cell proliferation, was restricted to basal and immediate suprabasal layers at the wound edge. Keratinocytes populated the wound bed below the scab by migration, which was supported by keratinocyte proliferation in the surrounding epidermis both at and adjacent to the wound edge.


Asunto(s)
Queratinocitos/citología , Queratinas/metabolismo , Regeneración , Fenómenos Fisiológicos de la Piel , Piel/lesiones , Cicatrización de Heridas , Diferenciación Celular , Proliferación Celular , Humanos , Inmunohistoquímica , Queratinocitos/química , Queratinocitos/metabolismo , Queratinas/análisis , Piel/química , Piel/metabolismo
16.
Cancer Res ; 76(16): 4608-18, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27335109

RESUMEN

MYC-mediated pathogenesis in lung cancer continues to attract interest for new therapeutic strategies. In this study, we describe a transgenic mouse model of KRAS-driven lung adenocarcinoma that affords reversible activation of MYC, used here as a tool for lipidomic profiling of MYC-dependent lung tumors formed in this model. Advanced mass spectrometric imaging and surface analysis techniques were used to characterize the spatial and temporal changes in lipid composition in lung tissue. We found that normal lung tissue was characterized predominantly by saturated phosphatidylcholines and phosphatidylglycerols, which are major lipid components of pulmonary surfactant. In contrast, tumor tissues displayed an increase in phosphatidylinositols and arachidonate-containing phospholipids that can serve as signaling precursors. Deactivating MYC resulted in a rapid and dramatic decrease in arachidonic acid and its eicosanoid metabolites. In tumors with high levels of MYC, we found an increase in cytosolic phospholipase A2 (cPLA2) activity with a preferential release of membrane-bound arachidonic acid, stimulating the lipoxygenase (LOX) and COX pathways also amplified by MYC at the level of gene expression. Deactivating MYC lowered cPLA2 activity along with COX2 and 5-LOX mRNA levels. Notably, inhibiting the COX/5-LOX pathways in vivo reduced tumor burden in a manner associated with reduced cell proliferation. Taken together, our results show how MYC drives the production of specific eicosanoids critical for lung cancer cell survival and proliferation, with possible implications for the use of COX and LOX pathway inhibitors for lung cancer therapy. Cancer Res; 76(16); 4608-18. ©2016 AACR.


Asunto(s)
Adenocarcinoma/metabolismo , Eicosanoides/metabolismo , Metabolismo de los Lípidos/fisiología , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Animales , Modelos Animales de Enfermedad , Inmunohistoquímica , Neoplasias Pulmonares/patología , Espectrometría de Masas , Ratones , Ratones Transgénicos , Reacción en Cadena de la Polimerasa , Proteínas Proto-Oncogénicas p21(ras)/genética , Transducción de Señal/fisiología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
17.
J Mol Signal ; 6: 2, 2011 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-21371307

RESUMEN

The K-RAS oncogene is widely mutated in human cancers. Activating mutations in K-RAS give rise to constitutive signalling through the MAPK/ERK and PI3K/AKT pathways promoting increased cell division, reduced apoptosis and transformation. The majority of activating mutations in K-RAS are located in codons 12 and 13. In a human colorectal cancer we identified a novel K-RAS co-mutation that altered codons 19 and 20 resulting in transitions at both codons (L19F/T20A) in the same allele. Using focus forming transformation assays in vitro , we showed that co-mutation of L19F/T20A in K-RAS demonstrated intermediate transforming ability that was greater than that of individual L19F and T20A mutants, but less than that of G12D and G12V K-RAS mutants. This demonstrated the synergistic effects of co-mutation of codons 19 and 20 and illustrated that co-mutation of these codons is functionally significant.

18.
Cancer Res ; 70(3): 883-95, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20103622

RESUMEN

Comparative genomic hybridization (CGH) can reveal important disease genes but the large regions identified could sometimes contain hundreds of genes. Here we combine high-resolution CGH analysis of 598 human cancer cell lines with insertion sites isolated from 1,005 mouse tumors induced with the murine leukemia virus (MuLV). This cross-species oncogenomic analysis revealed candidate tumor suppressor genes and oncogenes mutated in both human and mouse tumors, making them strong candidates for novel cancer genes. A significant number of these genes contained binding sites for the stem cell transcription factors Oct4 and Nanog. Notably, mice carrying tumors with insertions in or near stem cell module genes, which are thought to participate in cell self-renewal, died significantly faster than mice without these insertions. A comparison of the profile we identified to that induced with the Sleeping Beauty (SB) transposon system revealed significant differences in the profile of recurrently mutated genes. Collectively, this work provides a rich catalogue of new candidate cancer genes for functional analysis.


Asunto(s)
Hibridación Genómica Comparativa/métodos , Predisposición Genética a la Enfermedad/genética , Neoplasias/genética , Proteínas Supresoras de Tumor/genética , Animales , Sitios de Unión/genética , Línea Celular Tumoral , Elementos Transponibles de ADN/genética , Femenino , Genómica/métodos , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mutagénesis Insercional , Mutación , Proteína Homeótica Nanog , Neoplasias/metabolismo , Neoplasias/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Especificidad de la Especie , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo
19.
Nat Protoc ; 4(5): 789-98, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19528954

RESUMEN

Insertional mutagens such as viruses and transposons are a useful tool for performing forward genetic screens in mice to discover cancer genes. These screens are most effective when performed using hundreds of mice; however, until recently, the cost-effective isolation and sequencing of insertion sites has been a major limitation to performing screens on this scale. Here we present a method for the high-throughput isolation of insertion sites using a highly efficient splinkerette-PCR method coupled with capillary or 454 sequencing. This protocol includes a description of the procedure for DNA isolation, DNA digestion, linker or splinkerette ligation, primary and secondary PCR amplification, and sequencing. This method, which takes about 1 week to perform, has allowed us to isolate hundreds of thousands of insertion sites from mouse tumors and, unlike other methods, has been specifically optimized for the murine leukemia virus (MuLV), and can easily be performed in a 96-well plate format for the efficient multiplex isolation of insertion sites.


Asunto(s)
Virus de la Leucemia Murina/fisiología , Reacción en Cadena de la Polimerasa/métodos , Integración Viral , Animales , Electroforesis en Gel de Agar , Virus de la Leucemia Murina/genética , Ratones , Mutagénesis Insercional , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA