Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Signal ; 14(7): 585-93, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11955951

RESUMEN

The regulation of c-Jun transcriptional activity by Jun N-terminal kinase (JNK) has become a paradigm for understanding how mitogen-activated protein (MAP) kinase signalling pathways elicit specific changes in gene transcription through selective phosphorylation of nuclear transcription factors. Selective phosphorylation of c-Jun by JNK is determined by a specific docking motif in c-Jun, the delta region, which enables JNK to associate physically with c-Jun. Analogous MAP kinase docking motifs have subsequently been found in several other transcription factors, indicating that this is a general mechanism for ensuring specificity of signal transduction. Genetic and biochemical studies in mice, flies and cultured cells have provided evidence that signals relayed by JNK through c-Jun regulate a range of cellular processes including cell proliferation, tumourigenesis, apoptosis and embryonic development. Despite these advances, in most cases, the genes or programs of gene expression downstream of JNK and c-Jun, which control these processes, have not been defined. Here, we review the current understanding of the molecular basis and biological consequences of JNK signalling via c-Jun and highlight some of the mechanistic issues, which remain to be resolved.


Asunto(s)
Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/fisiología , Proteínas Proto-Oncogénicas c-jun/metabolismo , Animales , Apoptosis , División Celular , Proteínas Quinasas JNK Activadas por Mitógenos , Morfogénesis , Neoplasias/etiología , Fosforilación , Activación Transcripcional
2.
Mol Cancer Ther ; 9(6): 1730-9, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20515952

RESUMEN

Castrate-resistant prostate cancer remains a major clinical challenge. Due to the toxicity profile of taxane-based chemotherapy and treatment failure in some patients, novel agents with improved efficacy to side effect profiles are urgently needed. Eg5, a member of the kinesin-5 family, controls the formation of the bipolar spindle during cell division, and suppressed Eg5 function leads to mitotic arrest. S-Trityl-L-cysteine (STLC) is a novel Eg5-specific small-molecule inhibitor. Here, we report the first study to evaluate its use in prostate cancer. In a panel of prostate cancer cells, LNCaP and PC3 cells were the most and least sensitive to STLC treatment, with a 7.2-fold difference in their respective GI(50) values: 250 nmol/L and 1.8 micromol/L. In LNCaP cells, treatment with either STLC or docetaxel resulted in transient G(2)-M arrest and subsequent caspase-mediated cell death. However, STLC- and docetaxel-treated PC3M cells have distinct fates: STLC induced a transient G(2)-M arrest, followed by polyploidy; in contrast, docetaxel-treated PC3M cells progressed to apoptosis after a transient G(2)-M arrest. Docetaxel-resistant LNCaP-derived (LDocR) cells respond to STLC in a similar manner to the parental cells. Although the docetaxel-resistant PC3M-derived (PDocR) cell line and its parental PC3M cells have similar GI(50) to STLC treatment, PDocR cells showed significantly more G(2)-M arrest and less apoptosis. Hence, although docetaxel-resistant prostate cancer cells remain responsive to Eg5 inhibition with STLC, there are key differences at the cell cycle level, which may have implication in future development.


Asunto(s)
Antineoplásicos/farmacología , Cisteína/análogos & derivados , Cinesinas/antagonistas & inhibidores , Neoplasias de la Próstata/patología , Taxoides/farmacología , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Línea Celular Tumoral , Cisteína/química , Cisteína/farmacología , Docetaxel , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Cinesinas/metabolismo , Masculino , Propidio/metabolismo , Neoplasias de la Próstata/metabolismo , Regulación hacia Arriba/efectos de los fármacos
3.
Clin Exp Pharmacol Physiol ; 32(9): 777-88, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16173936

RESUMEN

1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2. In rat and guinea-pig isolated right atria, CVE (0.1-10 microg/mL) caused tachycardia in the presence of atropine (1 micromol/L), a response almost completely abolished by pretreatment with tetrodotoxin (TTX; 0.1 micromol/L). In paced left atria from guinea-pig or rat, CVE (0.1-3 microg/mL) caused a positive inotropic response in the presence of atropine (1 micromol/L). 3. In rat mesenteric small arteries, CVE (0.1-30 microg/mL) caused concentration-dependent contractions that were unaffected by 0.1 micromol/L TTX, 0.3 micromol/L prazosin or 0.1 micromol/L omega-conotoxin GVIA. 4. Neither the rat right atria tachycardic response nor the contraction of rat mesenteric arteries to CVE were affected by the presence of box jellyfish (Chironex fleckeri) antivenom (92.6 units/mL). 5. In human isolated driven right atrial trabeculae muscle strips, CVE (10 microg/mL) tended to cause an initial fall, followed by a more sustained increase, in contractile force. In the presence of atropine (1 micromol/L), CVE only caused a positive inotropic response. In separate experiments in the presence of propranolol (0.2 micromol/L), the negative inotropic effect of CVE was enhanced, whereas the positive inotropic response was markedly decreased. 6. In anaesthetized piglets, CVE (67 microg/kg, i.v.) caused sustained tachycardia and systemic and pulmonary hypertension. Venous blood samples demonstrated a marked elevation in circulating levels of noradrenaline and adrenaline. 7. We conclude that C. barnesi venom may contain a neural sodium channel activator (blocked by TTX) that, in isolated atrial tissue (and in vivo), causes the release of transmitter (and circulating) catecholamines. The venom may also contain a 'direct' vasoconstrictor component. These observations explain, at least in part, the clinical features of the potentially deadly Irukandji syndrome.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Venenos de Cnidarios/toxicidad , Cubomedusas/fisiología , Animales , Antivenenos/farmacología , Atropina/farmacología , Relación Dosis-Respuesta a Droga , Cobayas , Atrios Cardíacos/efectos de los fármacos , Humanos , Técnicas In Vitro , Contracción Miocárdica/efectos de los fármacos , Parasimpatolíticos/farmacología , Propranolol/farmacología , Ratas , Porcinos
4.
EMBO J ; 21(20): 5448-56, 2002 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-12374745

RESUMEN

Candida albicans is a major fungal pathogen of humans. It regulates its morphology in response to various environmental signals, but many of these signals are poorly defined. We show that amino acid starvation induces filamentous growth in C.albicans. Also, starvation for a single amino acid (histidine) induces CaHIS4, CaHIS7, CaARO4, CaLYS1 and CaLYS2 gene expression in a manner reminiscent of the GCN response in Saccharomyces cerevisiae. These morphogenetic and GCN-like responses are both dependent upon CaGcn4, which is a functional homologue of S.cerevisiae Gcn4. Like ScGcn4, CaGcn4 activates the transcription of amino acid biosynthetic genes via the GCRE element, and CaGcn4 confers resistance to the histidine analogue, 3-aminotriazole. CaGcn4 interacts with the Ras-cAMP pathway to promote filamentous growth, but the GCN-like response is not dependent upon morphogenetic signalling. CaGcn4 acts as a global regulator in C.albicans, co-ordinating both metabolic and morphogenetic responses to amino acid starvation.


Asunto(s)
Aminoácidos/metabolismo , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Candida albicans/genética , Medios de Cultivo , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Histidina/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas Quinasas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Especificidad de la Especie , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
5.
Biochem J ; 367(Pt 3): 577-85, 2002 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-12167088

RESUMEN

We have identified a novel c-Jun N-terminal kinase (JNK)-interacting protein, Sab, by yeast two-hybrid screening. Sab binds to and serves as a substrate for JNK in vitro, and was previously found to interact with the Src homology 3 (SH3) domain of Bruton's tyrosine kinase (Btk). Inspection of the sequence of Sab reveals the presence of two putative mitogen-activated protein kinase interaction motifs (KIMs) similar to that found in the JNK docking domain of the c-Jun transcription factor, and four potential serine-proline JNK phosphorylation sites in the C-terminal half of the molecule. Using deletion and site-directed mutagenesis, we demonstrate that the most N-terminal KIM in Sab is essential for JNK binding, and that, as with c-Jun, physical interaction with JNK is necessary for Sab phosphorylation. Interestingly, confocal immunocytochemistry and cell fractionation studies indicate that Sab is associated with mitochondria, where it co-localizes with a fraction of active JNK. These and previously reported properties of Sab suggest a possible role in targeting JNK to this subcellular compartment and/or mediating cross-talk between the Btk and JNK signal transduction pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular Transformada , Embrión de Pollo , Proteínas Quinasas JNK Activadas por Mitógenos , Mutagénesis Sitio-Dirigida , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA