Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Angew Chem Int Ed Engl ; 62(47): e202312514, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37768840

RESUMEN

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.


Asunto(s)
Mupirocina , Sintasas Poliquetidas , Sintasas Poliquetidas/metabolismo , Hidroxilación , Antibacterianos/química
2.
Angew Chem Int Ed Engl ; 61(50): e202212393, 2022 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-36227272

RESUMEN

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).


Asunto(s)
Antibacterianos , Mupirocina , Antibacterianos/química , Proteína Transportadora de Acilo/metabolismo , Sintasas Poliquetidas/metabolismo
3.
Biochemistry ; 60(3): 219-230, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33416314

RESUMEN

The acyl carrier protein (ACP) is an indispensable component of both fatty acid and polyketide synthases and is primarily responsible for delivering acyl intermediates to enzymatic partners. At present, increasing numbers of multidomain ACPs have been discovered with roles in molecular recognition of trans-acting enzymatic partners as well as increasing metabolic flux. Further structural information is required to provide insight into their function, yet to date, the only high-resolution structure of this class to be determined is that of the doublet ACP (two continuous ACP domains) from mupirocin synthase. Here we report the solution nuclear magnetic resonance (NMR) structure of the doublet ACP domains from PigH (PigH ACP1-ACP2), which is an enzyme that catalyzes the formation of the bipyrrolic intermediate of prodigiosin, a potent anticancer compound with a variety of biological activities. The PigH ACP1-ACP2 structure shows each ACP domain consists of three conserved helices connected by a linker that is partially restricted by interactions with the ACP1 domain. Analysis of the holo (4'-phosphopantetheine, 4'-PP) form of PigH ACP1-ACP2 by NMR revealed conformational exchange found predominantly in the ACP2 domain reflecting the inherent plasticity of this ACP. Furthermore, ensemble models obtained from SAXS data reveal two distinct conformers, bent and extended, of both apo (unmodified) and holo PigH ACP1-ACP2 mediated by the central linker. The bent conformer appears to be a result of linker-ACP1 interactions detected by NMR and might be important for intradomain communication during the biosynthesis. These results provide new insights into the behavior of the interdomain linker of multiple ACP domains that may modulate protein-protein interactions. This is likely to become an increasingly important consideration for metabolic engineering in prodigiosin and other related biosynthetic pathways.


Asunto(s)
Proteína Transportadora de Acilo/química , Proteínas Bacterianas/química , Modelos Moleculares , Simulación de Dinámica Molecular , Serratia/química , Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/metabolismo , Resonancia Magnética Nuclear Biomolecular , Prodigiosina/biosíntesis , Prodigiosina/química , Dominios Proteicos , Serratia/metabolismo
4.
J Biol Chem ; 293(50): 19429-19440, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30337369

RESUMEN

Toxin-antitoxin (TA) systems are present in many bacteria and play important roles in bacterial growth, physiology, and pathogenicity. Those that are best studied are the type II TA systems, in which both toxins and antitoxins are proteins. The HicAB system is one of the prototypic TA systems, found in many bacterial species. Complex interactions between the protein toxin (HicA), the protein antitoxin (HicB), and the DNA upstream of the encoding genes regulate the activity of this system, but few structural details are available about how HicA destabilizes the HicB-DNA complex. Here, we determined the X-ray structures of HicB and the HicAB complex to 1.8 and 2.5 Å resolution, respectively, and characterized their DNA interactions. This revealed that HicB forms a tetramer and HicA and HicB form a heterooctameric complex that involves structural reorganization of the C-terminal (DNA-binding) region of HicB. Our observations indicated that HicA has a profound impact on binding of HicB to DNA sequences upstream of hicAB in a stoichiometric-dependent way. At low ratios of HicA:HicB, there was no effect on DNA binding, but at higher ratios, the affinity for DNA declined cooperatively, driving dissociation of the HicA:HicB:DNA complex. These results reveal the structural mechanisms by which HicA de-represses the HicB-DNA complex.


Asunto(s)
Antitoxinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , ADN/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo , Antitoxinas/química , Proteínas Bacterianas/genética , Burkholderia pseudomallei , Modelos Moleculares , Operón/genética , Unión Proteica , Conformación Proteica , Toxinas Biológicas/genética
5.
Acta Crystallogr D Struct Biol ; 79(Pt 10): 881-894, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37712436

RESUMEN

Septins are membrane-associated, GTP-binding proteins that are present in most eukaryotes. They polymerize to play important roles as scaffolds and/or diffusion barriers as part of the cytoskeleton. α-Helical coiled-coil domains are believed to contribute to septin assembly, and those observed in both human SEPT6 and SEPT8 form antiparallel homodimers. These are not compatible with their parallel heterodimeric organization expected from the current model for protofilament assembly, but they could explain the interfilament cross-bridges observed by microscopy. Here, the first structure of a heterodimeric septin coiled coil is presented, that between SEPT14 and SEPT7; the former is a SEPT6/SEPT8 homolog. This new structure is parallel, with two long helices that are axially shifted by a full helical turn with reference to their sequence alignment. The structure also has unusual knobs-into-holes packing of side chains. Both standard seven-residue (heptad) and the less common 11-residue (hendecad) repeats are present, creating two distinct regions with opposite supercoiling, which gives rise to an overall straight coiled coil. Part of the hendecad region is required for heterodimerization and therefore may be crucial for selective septin recognition. These unconventional sequences and structural features produce a metastable heterocomplex that nonetheless has enough specificity to promote correct protofilament assembly. For instance, the lack of supercoiling may facilitate unzipping and transitioning to the antiparallel homodimeric state.


Asunto(s)
Proteínas , Septinas , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , Proteínas/química , Septinas/química , Rayos X
6.
Angew Chem Weinheim Bergstr Ger ; 135(47): e202312514, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38515435

RESUMEN

Mupirocin is a clinically important antibiotic produced by a trans-AT Type I polyketide synthase (PKS) in Pseudomonas fluorescens. The major bioactive metabolite, pseudomonic acid A (PA-A), is assembled on a tetrasubstituted tetrahydropyran (THP) core incorporating a 6-hydroxy group proposed to be introduced by α-hydroxylation of the thioester of the acyl carrier protein (ACP) bound polyketide chain. Herein, we describe an in vitro approach combining purified enzyme components, chemical synthesis, isotopic labelling, mass spectrometry and NMR in conjunction with in vivo studies leading to the first characterisation of the α-hydroxylation bimodule of the mupirocin biosynthetic pathway. These studies reveal the precise timing of hydroxylation by MupA, substrate specificity and the ACP dependency of the enzyme components that comprise this α-hydroxylation bimodule. Furthermore, using purified enzyme, it is shown that the MmpA KS0 shows relaxed substrate specificity, suggesting precise spatiotemporal control of in trans MupA recruitment in the context of the PKS. Finally, the detection of multiple intermodular MupA/ACP interactions suggests these bimodules may integrate MupA into their assembly.

7.
Angew Chem Weinheim Bergstr Ger ; 134(50): e202212393, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38505625

RESUMEN

Mupirocin is a clinically important antibiotic produced by Pseudomonas fluorescens NCIMB 10586 that is assembled by a complex trans-AT polyketide synthase. The polyketide fragment, monic acid, is esterified by a 9-hydroxynonanoic acid (9HN) side chain which is essential for biological activity. The ester side chain assembly is initialised from a 3-hydroxypropionate (3HP) starter unit attached to the acyl carrier protein (ACP) MacpD, but the fate of this species is unknown. Herein we report the application of NMR spectroscopy, mass spectrometry, chemical probes and in vitro assays to establish the remaining steps of 9HN biosynthesis. These investigations reveal a complex interplay between a novel iterative or "stuttering" KS-AT didomain (MmpF), the multidomain module MmpB and multiple ACPs. This work has important implications for understanding the late-stage biosynthetic steps of mupirocin and will be important for future engineering of related trans-AT biosynthetic pathways (e.g. thiomarinol).

8.
FEBS Lett ; 595(1): 133-144, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33043457

RESUMEN

Menisporopsin A is a fungal bioactive macrocyclic polylactone, the biosynthesis of which requires only reducing (R) and nonreducing (NR) polyketide synthases (PKSs) to guide a series of esterification and cyclolactonization reactions. There is no structural information pertaining to these PKSs. Here, we report the solution characterization of singlet and doublet acyl carrier protein (ACP2 and ACP1 -ACP2 )-thioesterase (TE) domains from NR-PKS involved in menisporopsin A biosynthesis. Small-angle X-ray scattering (SAXS) studies in combination with homology modelling reveal that these polypeptides adopt a distinctive beads-on-a-string configuration, characterized by the presence of highly flexible interdomain linkers. These models provide a platform for studying domain organization and interdomain interactions in fungal NR-PKSs, which may be of value in directing the design of functionally optimized polyketide scaffolds.


Asunto(s)
Proteína Transportadora de Acilo/química , Hongos/enzimología , Sintasas Poliquetidas/química , Tioléster Hidrolasas/química , Dicroismo Circular , Macrólidos/química , Simulación de Dinámica Molecular , Dominios Proteicos , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
ACS Chem Biol ; 15(2): 494-503, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31977176

RESUMEN

Mupirocin, a commercially available antibiotic produced by Pseudomonas fluorescens NCIMB 10586, and thiomarinol, isolated from the marine bacterium Pseudoalteromonas sp. SANK 73390, both consist of a polyketide-derived monic acid homologue esterified with either 9-hydroxynonanoic acid (mupirocin, 9HN) or 8-hydroxyoctanoic acid (thiomarinol, 8HO). The mechanisms of formation of these deceptively simple 9HN and 8HO fatty acid moieties in mup and tml, respectively, remain unresolved. To define starter unit generation, the purified mupirocin proteins MupQ, MupS, and MacpD and their thiomarinol equivalents (TmlQ, TmlS and TacpD) have been expressed and shown to convert malonyl coenzyme A (CoA) and succinyl CoA to 3-hydroxypropionoyl (3-HP) or 4-hydroxybutyryl (4-HB) fatty acid starter units, respectively, via the MupQ/TmlQ catalyzed generation of an unusual bis-CoA/acyl carrier protein (ACP) thioester, followed by MupS/TmlS catalyzed reduction. Mix and match experiments show MupQ/TmlQ to be highly selective for the correct CoA. MacpD/TacpD were interchangeable but alternate trans-acting ACPs from the mupirocin pathway (MacpA/TacpA) or a heterologous ACP (BatA) were nonfunctional. MupS and TmlS selectivity was more varied, and these reductases differed in their substrate and ACP selectivity. The solution structure of MacpD determined by NMR revealed a C-terminal extension with partial helical character that has been shown to be important for maintaining high titers of mupirocin. We generated a truncated MacpD construct, MacpD_T, which lacks this C-terminal extension but retains an ability to generate 3-HP with MupS and MupQ, suggesting further downstream roles in protein-protein interactions for this region of the ACP.


Asunto(s)
Proteína Transportadora de Acilo/química , Antibacterianos/síntesis química , Proteínas Bacterianas/química , Mupirocina/análogos & derivados , Mupirocina/síntesis química , Oxidorreductasas/química , Proteína Transportadora de Acilo/aislamiento & purificación , Antibacterianos/biosíntesis , Proteínas Bacterianas/aislamiento & purificación , Mupirocina/biosíntesis , Oxidorreductasas/aislamiento & purificación , Pseudoalteromonas/enzimología , Pseudomonas fluorescens/enzimología , Especificidad por Sustrato
10.
Structure ; 28(12): 1300-1312.e5, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32877646

RESUMEN

The cation-independent mannose 6-phosphate (M6P)/Insulin-like growth factor-2 receptor (CI-MPR/IGF2R) is an ∼300 kDa transmembrane protein responsible for trafficking M6P-tagged lysosomal hydrolases and internalizing IGF2. The extracellular region of the CI-MPR has 15 homologous domains, including M6P-binding domains (D) 3, 5, 9, and 15 and IGF2-binding domain 11. We have focused on solving the first structures of human D7-10 within two multi-domain constructs, D9-10 and D7-11, and provide the first high-resolution description of the high-affinity M6P-binding D9. Moreover, D9 stabilizes a well-defined hub formed by D7-11 whereby two penta-domains intertwine to form a dimeric helical-type coil via an N-glycan bridge on D9. Remarkably the D7-11 structure matches an IGF2-bound state of the receptor, suggesting this may be an intrinsically stable conformation at neutral pH. Interdomain clusters of histidine and proline residues may impart receptor rigidity and play a role in structural transitions at low pH.


Asunto(s)
Receptor IGF Tipo 2/química , Sitios de Unión , Humanos , Concentración de Iones de Hidrógeno , Manosafosfatos/química , Manosafosfatos/metabolismo , Simulación del Acoplamiento Molecular , Unión Proteica , Multimerización de Proteína , Receptor IGF Tipo 2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA