Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 627(8002): 204-211, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383787

RESUMEN

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)-bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1-4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change 'glues' BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target-ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4-IBG1-DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation.


Asunto(s)
Diseño de Fármacos , Proteolisis , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas que Contienen Bromodominio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Quimera Dirigida a la Proteólisis , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Mol Cell ; 81(8): 1617-1630, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33689749

RESUMEN

Multi-dimensional omics profiling continues to illuminate the complexity of cellular processes. Because of difficult mechanistic interpretation of phenotypes induced by slow perturbation, fast experimental setups are increasingly used to dissect causal interactions directly in cells. Here we review a growing body of studies that leverage rapid pharmacological perturbation to delineate causality in gene control. When coupled with kinetically matched readouts, fast chemical genetic tools allow recording of primary phenotypes before confounding secondary effects manifest. The toolbox encompasses directly acting probes, such as active-site inhibitors and proteolysis-targeting chimeras, as well as strategies using genetic engineering to render target proteins chemically tractable, such as analog-sensitive and degron systems. We anticipate that extrapolation of these concepts to single-cell setups will further transform our mechanistic understanding of transcriptional control in the future. Importantly, the concept of leveraging speed to derive causality should be broadly applicable to many aspects of biological regulation.


Asunto(s)
Ingeniería Genética/métodos , Transcripción Genética/genética , Animales , Regulación de la Expresión Génica/genética , Genética , Humanos , Proteolisis
3.
Mol Cell ; 81(15): 3096-3109.e8, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34146481

RESUMEN

Transcription by RNA polymerase II (RNA Pol II) relies on the elongation factors PAF1 complex (PAF), RTF1, and SPT6. Here, we use rapid factor depletion and multi-omics analysis to investigate how these elongation factors influence RNA Pol II elongation activity in human cells. Whereas depletion of PAF subunits PAF1 and CTR9 has little effect on cellular RNA synthesis, depletion of RTF1 or SPT6 strongly compromises RNA Pol II activity, albeit in fundamentally different ways. RTF1 depletion decreases RNA Pol II velocity, whereas SPT6 depletion impairs RNA Pol II progression through nucleosomes. These results show that distinct elongation factors stimulate either RNA Pol II velocity or RNA Pol II progression through chromatin in vivo. Further analysis provides evidence for two distinct barriers to early elongation: the promoter-proximal pause site and the +1 nucleosome. It emerges that the first barrier enables loading of elongation factors that are required to overcome the second and subsequent barriers to transcription.


Asunto(s)
ARN Polimerasa II/metabolismo , ARN/biosíntesis , Factores de Transcripción/metabolismo , Humanos , Células K562 , Nucleosomas/genética , Nucleosomas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Polimerasa II/genética , Factores de Transcripción/genética
4.
Mol Cell ; 75(4): 849-858.e8, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442425

RESUMEN

Inducing protein degradation via small molecules is a transformative therapeutic paradigm. Although structural requirements of target degradation are emerging, mechanisms determining the cellular response to small-molecule degraders remain poorly understood. To systematically delineate effectors required for targeted protein degradation, we applied genome-scale CRISPR/Cas9 screens for five drugs that hijack different substrate receptors (SRs) of cullin RING ligases (CRLs) to induce target proteolysis. We found that sensitivity to small-molecule degraders is dictated by shared and drug-specific modulator networks, including the COP9 signalosome and the SR exchange factor CAND1. Genetic or pharmacologic perturbation of these effectors impairs CRL plasticity and arrests a wide array of ligases in a constitutively active state. Resulting defects in CRL decommissioning prompt widespread CRL auto-degradation that confers resistance to multiple degraders. Collectively, our study informs on regulation and architecture of CRLs amenable for targeted protein degradation and outlines biomarkers and putative resistance mechanisms for upcoming clinical investigation.


Asunto(s)
Complejo del Señalosoma COP9/metabolismo , Proteínas Cullin/metabolismo , Proteolisis , Factores de Transcripción/metabolismo , Complejo del Señalosoma COP9/genética , Proteínas Cullin/genética , Humanos , Factores de Transcripción/genética
5.
Nat Chem Biol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907113

RESUMEN

Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening. Through multiomics profiling and genome-scale CRISPR-Cas9 screens, we identify that orpinolide disrupts Golgi homeostasis via a mechanism that requires active phosphatidylinositol 4-phosphate signaling at the endoplasmic reticulum-Golgi membrane interface. Thermal proteome profiling and genetic validation studies reveal the oxysterol-binding protein OSBP as the direct and phenotypically relevant target of orpinolide. Collectively, these data reaffirm sterol transport as a therapeutically actionable dependency in leukemia and motivate ensuing translational investigation via the probe-like compound orpinolide.

6.
Nat Chem Biol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907112

RESUMEN

Sterol-binding proteins are important regulators of lipid homeostasis and membrane integrity; however, the discovery of selective modulators can be challenging due to structural similarities in the sterol-binding domains. We report the discovery of potent and selective inhibitors of oxysterol-binding protein (OSBP), which we term oxybipins. Sterol-containing chemical chimeras aimed at identifying new sterol-binding proteins by targeted degradation, led to a significant reduction in levels of Golgi-associated proteins. The degradation occurred in lysosomes, concomitant with changes in protein glycosylation, indicating that the degradation of Golgi proteins was a downstream effect. By establishing a sterol transport protein biophysical assay panel, we discovered that the oxybipins potently inhibited OSBP, resulting in blockage of retrograde trafficking and attenuating Shiga toxin toxicity. As the oxybipins do not target other sterol transporters and only stabilized OSBP in intact cells, we advocate their use as tools to study OSBP function and therapeutic relevance.

7.
Nat Chem Biol ; 20(1): 93-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37679459

RESUMEN

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


Asunto(s)
Ciclinas , Ubiquitina-Proteína Ligasas , Ciclinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Relación Estructura-Actividad
8.
Nat Chem Biol ; 19(3): 323-333, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329119

RESUMEN

Targeted protein degradation is a novel pharmacology established by drugs that recruit target proteins to E3 ubiquitin ligases. Based on the structure of the degrader and the target, different E3 interfaces are critically involved, thus forming defined 'functional hotspots'. Understanding disruptive mutations in functional hotspots informs on the architecture of the assembly, and highlights residues susceptible to acquire resistance phenotypes. Here we employ haploid genetics to show that hotspot mutations cluster in substrate receptors of hijacked ligases, where mutation type and frequency correlate with gene essentiality. Intersection with deep mutational scanning revealed hotspots that are conserved or specific for chemically distinct degraders and targets. Biophysical and structural validation suggests that hotspot mutations frequently converge on altered ternary complex assembly. Moreover, we validated hotspots mutated in patients that relapse from degrader treatment. In sum, we present a fast and widely accessible methodology to characterize small-molecule degraders and associated resistance mechanisms.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Proteínas Portadoras/metabolismo
9.
Mol Cell ; 67(1): 5-18.e19, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28673542

RESUMEN

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions. Here, the mechanistic characterization of an optimized chemical degrader of BET bromodomain proteins, dBET6, led to the unexpected identification of BET proteins as master regulators of global transcription elongation. In contrast to the selective effect of bromodomain inhibition on transcription, BET degradation prompts a collapse of global elongation that phenocopies CDK9 inhibition. Notably, BRD4 loss does not directly affect CDK9 localization. These studies, performed in translational models of T cell leukemia, establish a mechanism-based rationale for the development of BET bromodomain degradation as cancer therapy.


Asunto(s)
Quinasa 9 Dependiente de la Ciclina/metabolismo , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Antineoplásicos/farmacología , Proteínas de Ciclo Celular , Quinasa 9 Dependiente de la Ciclina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Regulación Leucémica de la Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Células Jurkat , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Complejos Multiproteicos , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estabilidad Proteica , Proteolisis , ARN Polimerasa II/metabolismo , Factores de Tiempo , Elongación de la Transcripción Genética/efectos de los fármacos , Factores de Transcripción/genética , Transfección , Ubiquitina-Proteína Ligasas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Bioorg Med Chem Lett ; 107: 129779, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38729317

RESUMEN

Targeted protein degradation is mediated by small molecules that induce or stabilize protein-protein interactions between targets and the ubiquitin-proteasome machinery. Currently, there remains a need to expand the repertoire of viable E3 ligases available for hijacking. Notably, covalent chemistry has been employed to engage a handful of E3 ligases, including DCAF11. Here, we disclose a covalent PROTAC that enables DCAF11-dependent degradation, featuring a cyanoacrylamide warhead. Our findings underscore DCAF11 as an interesting candidate with a capacity to accommodate diverse electrophilic chemistries compatible with targeted protein degradation.


Asunto(s)
Acrilamidas , Humanos , Acrilamidas/química , Acrilamidas/farmacología , Acrilamidas/síntesis química , Estructura Molecular , Proteolisis/efectos de los fármacos , Descubrimiento de Drogas , Enzimas Activadoras de Ubiquitina/metabolismo , Enzimas Activadoras de Ubiquitina/antagonistas & inhibidores , Relación Estructura-Actividad
11.
Angew Chem Int Ed Engl ; 63(12): e202316730, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38153885

RESUMEN

Degraders hold the promise to efficiently inactivate previously intractable disease-relevant targets. Unlike traditional inhibitors, degraders act substoichiometrically and rely on the hijacked proteolysis machinery, which can also act as an entry point for resistance. To fully harness the potential of targeted protein degradation, it is crucial to comprehend resistance mechanisms and formulate effective strategies to overcome them. We conducted a chemical screening to identify synthetic lethal vulnerabilities of cancer cells that exhibit widespread resistance to degraders. Comparative profiling followed by tailored optimization delivered the small molecule RBS-10, which shows preferential cytotoxicity against cells pan-resistant to degraders. Multiomics deconvolution of the mechanism of action revealed that RBS-10 acts as a prodrug bioactivated by the oxidoreductase enzyme NQO1, which is highly overexpressed in our resistance models. Collectively, our work informs on NQO1 as an actionable vulnerability to overcome resistance to degraders and as a biomarker to selectively exploit bioactivatable prodrugs in cancer.


Asunto(s)
Neoplasias , Profármacos , Humanos , Profármacos/farmacología , Proteolisis , NAD(P)H Deshidrogenasa (Quinona)/metabolismo
12.
J Am Chem Soc ; 145(5): 2711-2732, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36706315

RESUMEN

Only around 20% of the human proteome is considered to be druggable with small-molecule antagonists. This leaves some of the most compelling therapeutic targets outside the reach of ligand discovery. The concept of targeted protein degradation (TPD) promises to overcome some of these limitations. In brief, TPD is dependent on small molecules that induce the proximity between a protein of interest (POI) and an E3 ubiquitin ligase, causing ubiquitination and degradation of the POI. In this perspective, we want to reflect on current challenges in the field, and discuss how advances in multiomics profiling, artificial intelligence, and machine learning (AI/ML) will be vital in overcoming them. The presented roadmap is discussed in the context of small-molecule degraders but is equally applicable for other emerging proximity-inducing modalities.


Asunto(s)
Inteligencia Artificial , Multiómica , Proteolisis , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
J Am Chem Soc ; 145(2): 1176-1184, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36602777

RESUMEN

Targeted protein degradation (TPD) is a new pharmacology based on small-molecule degraders that induce proximity between a protein of interest (POI) and an E3 ubiquitin ligase. Of the approximately 600 E3s encoded in the human genome, only around 2% can be co-opted with degraders. This underrepresentation is caused by a paucity of discovery approaches to identify degraders for defined E3s. This hampers a rational expansion of the druggable proteome and stymies critical advancements in the field, such as tissue- and cell-specific degradation. Here, we focus on dynamic NEDD8 conjugation, a post-translational, regulatory circuit that controls the activity of 250 cullin RING E3 ligases (CRLs). Leveraging this regulatory layer enabled us to develop a scalable assay to identify compounds that alter the interactome of an E3 of interest by tracing their abundance after pharmacologically induced auto-degradation. Initial validation studies are performed for CRBN and VHL, but proteomics studies indicate broad applicability for many CRLs. Among amenable ligases, we select CRLDCAF15 for a proof-of-concept screen, leading to the identification of a novel DCAF15-dependent molecular glue degrader inducing the degradation of RBM23 and RBM39. Together, this strategy empowers the scalable identification of degraders specific to a ligase of interest.


Asunto(s)
Proteínas Portadoras , Ubiquitina-Proteína Ligasas , Humanos , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Portadoras/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis
14.
Nature ; 543(7644): 270-274, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28241139

RESUMEN

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Leucemia/genética , Leucemia/metabolismo , Dominios Proteicos , Transcripción Genética , Factores de Elongación Transcripcional/química , Factores de Elongación Transcripcional/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Edición Génica , Genoma/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Leucemia/patología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Proteolisis , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Elongación Transcripcional/genética
15.
Nat Chem Biol ; 16(11): 1199-1207, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32747809

RESUMEN

Targeted protein degradation is a new therapeutic modality based on drugs that destabilize proteins by inducing their proximity to E3 ubiquitin ligases. Of particular interest are molecular glues that can degrade otherwise unligandable proteins by orchestrating direct interactions between target and ligase. However, their discovery has so far been serendipitous, thus hampering broad translational efforts. Here, we describe a scalable strategy toward glue degrader discovery that is based on chemical screening in hyponeddylated cells coupled to a multi-omics target deconvolution campaign. This approach led us to identify compounds that induce ubiquitination and degradation of cyclin K by prompting an interaction of CDK12-cyclin K with a CRL4B ligase complex. Notably, this interaction is independent of a dedicated substrate receptor, thus functionally segregating this mechanism from all described degraders. Collectively, our data outline a versatile and broadly applicable strategy to identify degraders with nonobvious mechanisms and thus empower future drug discovery efforts.


Asunto(s)
Acetamidas/química , Antibacterianos/farmacología , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Doxiciclina/farmacología , Hidrazinas/química , Indoles/química , Proteolisis/efectos de los fármacos , Proteína 7 de Unión a Retinoblastoma/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Regulación de la Expresión Génica , Humanos , Estructura Molecular , Unión Proteica , Conformación Proteica , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos
16.
Am J Hematol ; 97(9): 1215-1225, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35794848

RESUMEN

In most patients with chronic myeloid leukemia (CML) clonal cells can be kept under control by BCR::ABL1 tyrosine kinase inhibitors (TKI). However, overt resistance or intolerance against these TKI may occur. We identified the epigenetic reader BRD4 and its downstream-effector MYC as growth regulators and therapeutic targets in CML cells. BRD4 and MYC were found to be expressed in primary CML cells, CD34+ /CD38- leukemic stem cells (LSC), and in the CML cell lines KU812, K562, KCL22, and KCL22T315I . The BRD4-targeting drug JQ1 was found to suppress proliferation in KU812 cells and primary leukemic cells in the majority of patients with chronic phase CML. In the blast phase of CML, JQ1 was less effective. However, the BRD4 degrader dBET6 was found to block proliferation and/or survival of primary CML cells in all patients tested, including blast phase CML and CML cells exhibiting the T315I variant of BCR::ABL1. Moreover, dBET6 was found to block MYC expression and to synergize with BCR::ABL1 TKI in inhibiting the proliferation in the JQ1-resistant cell line K562. Furthermore, BRD4 degradation was found to overcome osteoblast-induced TKI resistance of CML LSC in a co-culture system and to block interferon-gamma-induced upregulation of the checkpoint antigen PD-L1 in LSC. Finally, dBET6 was found to suppress the in vitro survival of CML LSC and their engraftment in NSG mice. Together, targeting of BRD4 and MYC through BET degradation sensitizes CML cells against BCR::ABL1 TKI and is a potent approach to overcome multiple forms of drug resistance in CML LSC.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Proteínas Nucleares , Animales , Crisis Blástica/tratamiento farmacológico , Proteínas de Ciclo Celular , Línea Celular Tumoral , Resistencia a Antineoplásicos , Proteínas de Fusión bcr-abl , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Proteínas Nucleares/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-myc , Células Madre , Factores de Transcripción/genética
17.
Mol Cell ; 55(2): 277-90, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-24981170

RESUMEN

Heterochromatin is required to restrict aberrant expression of retrotransposons, but it remains poorly defined due to the underlying repeat-rich sequences. We dissected Suv39h-dependent histone H3 lysine 9 trimethylation (H3K9me3) by genome-wide ChIP sequencing in mouse embryonic stem cells (ESCs). Refined bioinformatic analyses of repeat subfamilies indicated selective accumulation of Suv39h-dependent H3K9me3 at interspersed repetitive elements that cover ∼5% of the ESC epigenome. The majority of the ∼8,150 intact long interspersed nuclear elements (LINEs) and endogenous retroviruses (ERVs), but only a minor fraction of the >1.8 million degenerate and truncated LINEs/ERVs, are enriched for Suv39h-dependent H3K9me3. Transcriptional repression of intact LINEs and ERVs is differentially regulated by Suv39h and other chromatin modifiers in ESCs but governed by DNA methylation in committed cells. These data provide a function for Suv39h-dependent H3K9me3 chromatin to specifically repress intact LINE elements in the ESC epigenome.


Asunto(s)
Células Madre Embrionarias/enzimología , Retrovirus Endógenos/genética , Silenciador del Gen , N-Metiltransferasa de Histona-Lisina/fisiología , Histonas/metabolismo , Elementos de Nucleótido Esparcido Largo , Metiltransferasas/fisiología , Proteínas Represoras/fisiología , Animales , Células Cultivadas , Metilación de ADN , Ratones , Procesamiento Proteico-Postraduccional
18.
Nat Chem Biol ; 20(1): 13-14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37978259
19.
Proc Natl Acad Sci U S A ; 115(22): E5086-E5095, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29764999

RESUMEN

Competitive BET bromodomain inhibitors (BBIs) targeting BET proteins (BRD2, BRD3, BRD4, and BRDT) show promising preclinical activities against brain cancers. However, the BET protein-dependent glioblastoma (GBM)-promoting transcriptional network remains elusive. Here, with mechanistic exploration of a next-generation chemical degrader of BET proteins (dBET6), we reveal a profound and consistent impact of BET proteins on E2F1- dependent transcriptional program in both differentiated GBM cells and brain tumor-initiating cells. dBET6 treatment drastically reduces BET protein genomic occupancy, RNA-Pol2 activity, and permissive chromatin marks. Subsequently, dBET6 represses the proliferation, self-renewal, and tumorigenic ability of GBM cells. Moreover, dBET6-induced degradation of BET proteins exerts superior antiproliferation effects compared to conventional BBIs and overcomes both intrinsic and acquired resistance to BBIs in GBM cells. Our study reveals crucial functions of BET proteins and provides the rationale and therapeutic merits of targeted degradation of BET proteins in GBM.


Asunto(s)
Antineoplásicos/farmacología , Factor de Transcripción E2F1 , Glioblastoma , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al ARN , Proteínas de Ciclo Celular , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Factor de Transcripción E2F1/antagonistas & inhibidores , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo
20.
Nat Chem Biol ; 19(1): 3-4, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36577874
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA