Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17034, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273527

RESUMEN

Redesigning agrosystems to include more ecological regulations can help feed a growing human population, preserve soils for future productivity, limit dependency on synthetic fertilizers, and reduce agriculture contribution to global changes such as eutrophication and warming. However, guidelines for redesigning cropping systems from natural systems to make them more sustainable remain limited. Synthetizing the knowledge on biogeochemical cycles in natural ecosystems, we outline four ecological systems that synchronize the supply of soluble nutrients by soil biota with the fluctuating nutrient demand of plants. This synchrony limits deficiencies and excesses of soluble nutrients, which usually penalize both production and regulating services of agrosystems such as nutrient retention and soil carbon storage. In the ecological systems outlined, synchrony emerges from plant-soil and plant-plant interactions, eco-physiological processes, soil physicochemical processes, and the dynamics of various nutrient reservoirs, including soil organic matter, soil minerals, atmosphere, and a common market. We discuss the relative importance of these ecological systems in regulating nutrient cycles depending on the pedoclimatic context and on the functional diversity of plants and microbes. We offer ideas about how these systems could be stimulated within agrosystems to improve their sustainability. A review of the latest advances in agronomy shows that some of the practices suggested to promote synchrony (e.g., reduced tillage, rotation with perennial plant cover, crop diversification) have already been tested and shown to be effective in reducing nutrient losses, fertilizer use, and N2 O emissions and/or improving biomass production and soil carbon storage. Our framework also highlights new management strategies and defines the conditions for the success of these nature-based practices allowing for site-specific modifications. This new synthetized knowledge should help practitioners to improve the long-term productivity of agrosystems while reducing the negative impact of agriculture on the environment and the climate.


Asunto(s)
Ecosistema , Suelo , Humanos , Agricultura , Plantas , Carbono
2.
Mycorrhiza ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801470

RESUMEN

Walnut trees are cultivated and exploited worldwide for commercial timber and nut production. They are heterografted plants, with the rootstock selected to grow in different soil types and conditions and to provide the best anchorage, vigor, and resistance or tolerance to soil borne pests and diseases. However, no individual rootstock is tolerant of all factors that impact walnut production. In Europe, Juglans regia is mainly used as a rootstock. Like most terrestrial plants, walnut trees form arbuscular mycorrhizal symbioses, improving water and nutrient uptake and providing additional ecosystem services. Effects of arbuscular mycorrhizal symbiosis on root gene regulation, however, has never been assessed. We analyzed the response of one rootstock of J. regia to colonization by the arbuscular mycorrhizal fungus Rhizophagus irregularis DAOM197198. Plant growth as well as the nitrogen and phosphorus concentrations in roots and shoots were significantly increased in mycorrhizal plants versus non-colonized plants. In addition, we have shown that 1,549 genes were differentially expressed, with 832 and 717 genes up- and down-regulated, respectively. The analysis also revealed that some rootstock genes involved in plant nutrition through the mycorrhizal pathway, are regulated similarly as in other mycorrhizal woody species: Vitis vinifera and Populus trichocarpa. In addition, an enrichment analysis performed on GO and KEGG pathways revealed some regulation specific to J. regia (i.e., the juglone pathway). This analysis reinforces the role of arbuscular mycorrhizal symbiosis on root gene regulation and on the need to finely study the effects of diverse arbuscular mycorrhizal fungi on root gene regulation, but also of the scion on the functioning of an arbuscular mycorrhizal fungus in heterografted plants such as walnut tree.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37199717

RESUMEN

Three bacterial strains, 1AS11T, 1AS12 and 1AS13, members of the new symbiovar salignae and isolated from root nodules of Acacia saligna grown in Tunisia, were characterized using a polyphasic approach. All three strains were assigned to the Rhizobium leguminosarum complex on the basis of rrs gene analysis. Phylogenetic analysis based on 1734 nucleotides of four concatenated housekeeping genes (recA, atpD, glnII and gyrB) showed that the three strains were distinct from known rhizobia species of the R. leguminosarum complex and clustered as a separate clade within this complex. Phylogenomic analysis of 92 up-to-date bacterial core genes confirmed the unique clade. The digital DNA-DNA hybridization and blast-based average nucleotide identity values for the three strains and phylogenetically related Rhizobium species ranged from 35.9 to 60.0% and 87.16 to 94.58 %, which were lower than the 70 and 96% species delineation thresholds, respectively. The G+C contents of the strains were 60.82-60.92 mol% and the major fatty acids (>4 %) were summed feature 8 (57.81 %; C18 : 1 ω7c) and C18 : 1 ω7c 11-methyl (13.24%). Strains 1AS11T, 1AS12 and 1AS13 could also be differentiated from their closest described species (Rhizobium indicum, Rhizobium laguerreae and Rhizobium changzhiense) by phenotypic and physiological properties as well as fatty acid content. Based on the phylogenetic, genomic, physiological, genotypic and chemotaxonomic data presented in this study, strains 1AS11T, 1AS12 and 1AS13 represent a new species within the genus Rhizobium and we propose the name Rhizobium acaciae sp. nov. The type strain is 1AS11T (=DSM 113913T=ACCC 62388T).


Asunto(s)
Acacia , Rhizobium , Acacia/genética , Ácidos Grasos/química , Filogenia , Túnez , Nódulos de las Raíces de las Plantas/microbiología , Análisis de Secuencia de ADN , Composición de Base , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Técnicas de Tipificación Bacteriana , Nucleótidos
4.
Mycorrhiza ; 33(4): 241-248, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37450046

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are key organisms in viticultural ecosystems as they provide many ecosystem services to soils and plants. Data about AMF community dynamics over time are relatively scarce and at short time scales. Many factors such as the soil, climate, and agricultural practices could modify the dynamics and functions of microbial communities. However, the effects on microbial communities of plant phenology and changes in plant physiology over time largely have been overlooked. We analyzed the diversity of AMF in three geographically close vineyards with similar soil parameters for 2 years. The plots differed in grapevine age (11, 36, and 110 years), but had the same soil management practice (horse tillage). Diversity analyses revealed a difference in the composition of AMF communities between the soil and grapevine roots and among roots of grapevines of different ages. This underlines AMF adaptation to physiological changes in the host which can explain the development of different AMF communities. The dynamics of AMF communities can highlight their resilience to environmental changes and agricultural practices.


Asunto(s)
Micobioma , Micorrizas , Animales , Caballos , Ecosistema , Granjas , Raíces de Plantas/microbiología , Suelo , Plantas/microbiología , Microbiología del Suelo
5.
Mycorrhiza ; 33(5-6): 369-385, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37561219

RESUMEN

Arbuscular mycorrhizal symbiosis improves water and nutrient uptake by plants and provides them other ecosystem services. Grapevine is one of the major crops in the world. Vitis vinifera scions generally are grafted onto a variety of rootstocks that confer different levels of resistance against different pests, tolerance to environmental stress, and influence the physiology of the scions. Arbuscular mycorrhizal fungi are involved in the root architecture and in the immune response to soil-borne pathogens. However, the fine-tuned regulation and the transcriptomic plasticity of rootstocks in response to mycorrhization are still unknown. We compared the responses of 10 different grapevine rootstocks to arbuscular mycorrhizal symbiosis (AMS) formed with Rhizophagus irregularis DAOM197198 using RNA sequencing-based transcriptome profiling. We have highlighted a few shared regulation mechanisms, but also specific rootstock responses to R. irregularis colonization. A set of 353 genes was regulated by AMS in all ten rootstocks. We also compared the expression level of this set of genes to more than 2000 transcriptome profiles from various grapevine varieties and tissues to identify a class of transcripts related to mycorrhizal associations in these 10 rootstocks. Then, we compared the response of the 351 genes upregulated by mycorrhiza in grapevine to their Medicago truncatula homologs in response to mycorrhizal colonization based on available transcriptomic studies. More than 97% of the 351 M. truncatula-homologous grapevine genes were expressed in at least one mycorrhizal transcriptomic study, and 64% in every single RNAseq dataset. At the intra-specific level, we described, for the first time, shared and specific grapevine rootstock genes in response to R. irregularis symbiosis. At the inter-specific level, we defined a shared subset of mycorrhiza-responsive genes.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Simbiosis/fisiología , Ecosistema , Raíces de Plantas/microbiología , Perfilación de la Expresión Génica , Transcriptoma , Análisis de Secuencia de ARN
6.
Fungal Genet Biol ; 147: 103517, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434644

RESUMEN

For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/genética , Hongos/metabolismo , Fosfatos/metabolismo , Proteoma , Suelo/química , Proteínas Fúngicas/genética , Nitrógeno/metabolismo , Fosfatos/análisis , Raíces de Plantas/microbiología , Proteómica , Simbiosis/genética , Simbiosis/fisiología
7.
Mycorrhiza ; 31(6): 655-669, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34633544

RESUMEN

Modern agriculture is currently undergoing rapid changes in the face of the continuing growth of world population and many ensuing environmental challenges. Crop quality is becoming as important as crop yield and can be characterised by several parameters. For fruits and vegetables, quality descriptors can concern production cycle (e.g. conventional or organic farming), organoleptic qualities (e.g. sweet taste, sugar content, acidity) and nutritional qualities (e.g. mineral content, vitamins). For other crops, however, the presence of secondary metabolites such as anthocyanins or certain terpenes in the targeted tissues is of interest as well, especially for their human health properties. All plants are constantly interacting with microorganisms. These microorganisms include arbuscular mycorrhizal fungi as well as certain soil bacteria that provide ecosystem services related to plant growth, nutrition and quality parameters. This review is an update of current research on the single and combined (co-inoculation) use of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in crop production, with a focus on their positive impacts on crop quality traits (e.g. nutritional value, organoleptic properties). We also highlight the need to dissect mechanisms regulating plant-symbionts and symbiont-symbiont interactions, to develop farming practices and to study a broad range of interactions to optimize the symbiotic potential of root-associated microorganisms.


Asunto(s)
Micorrizas , Antocianinas , Bacterias , Producción de Cultivos , Productos Agrícolas , Ecosistema , Raíces de Plantas , Simbiosis
8.
Mycorrhiza ; 31(6): 637-653, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34657204

RESUMEN

Arbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense. The chronicle of mycorrhizal research is marked by multiple key milestones such as the initial description of a "persistent epiderm and pellicular wall structure" by Hartig; the introduction of the "Symbiotismus" and "Mycorrhiza" concepts by Frank; the description of diverse root-fungal morphologies; the first description of arbuscules by Gallaud; Mosse's pivotal statement of the beneficial nature of the arbuscular mycorrhizal symbiosis; the impact of molecular tools on the taxonomy of mycorrhizal fungi as well as the development of in vitro root organ cultures for producing axenic arbuscular mycorrhizal fungi (AMF). An appreciation of the story - full of twists and turns - of the arbuscular mycorrhiza, going from the roots of mycorrhiza history, along with the discovery of different mycorrhiza types such as ectomycorrhiza, can improve research to help face our days' challenge of developing sustainable agriculture that integrates the arbuscular mycorrhiza and its ecosystem services.


Asunto(s)
Micorrizas , Agricultura , Ecosistema , Raíces de Plantas , Plantas , Simbiosis
9.
Mycorrhiza ; 30(6): 735-747, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32820366

RESUMEN

While plants mainly rely on the use of inorganic nitrogen sources like ammonium and nitrate, soil-borne microorganisms like the ectomycorrhizal fungus Hebeloma cylindrosporum can also take up soil organic N in the form of amino acids and peptides that they use as nitrogen and carbon sources. Following the previous identification and functional expression in yeast of two PTR-like peptide transporters, the present study details the functions and substrates of HcPTR2A and HcPTR2B by analysing their transport kinetics in Xenopus laevis oocytes. While both transporters mediated high-affinity di- and tripeptide transport, HcPTR2A also showed low-affinity transport of several amino acids-mostly hydrophobic ones with large side chains.


Asunto(s)
Hebeloma , Proteínas de Transporte de Membrana , Micorrizas , Regulación Fúngica de la Expresión Génica , Hebeloma/genética , Proteínas de Transporte de Membrana/genética
10.
New Phytol ; 223(3): 1127-1142, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30843207

RESUMEN

Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.


Asunto(s)
Comercio , Micorrizas/fisiología , Agricultura , Nitrógeno , Fósforo , Desarrollo Sostenible , Simbiosis
11.
Mycorrhiza ; 28(1): 1-16, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28725961

RESUMEN

In arbuscular mycorrhizal (AM) roots, the plasma membrane (PM) of the host plant is involved in all developmental stages of the symbiotic interaction, from initial recognition to intracellular accommodation of intra-radical hyphae and arbuscules. Although the role of the PM as the agent for cellular morphogenesis and nutrient exchange is especially accentuated in endosymbiosis, very little is known regarding the PM protein composition of mycorrhizal roots. To obtain a global overview at the proteome level of the host PM proteins as modified by symbiosis, we performed a comparative protein profiling of PM fractions from Medicago truncatula roots either inoculated or not with the AM fungus Rhizophagus irregularis. PM proteins were isolated from root microsomes using an optimized discontinuous sucrose gradient; their subsequent analysis by liquid chromatography followed by mass spectrometry (MS) identified 674 proteins. Cross-species sequence homology searches combined with MS-based quantification clearly confirmed enrichment in PM-associated proteins and depletion of major microsomal contaminants. Changes in protein amounts between the PM proteomes of mycorrhizal and non-mycorrhizal roots were monitored further by spectral counting. This workflow identified a set of 82 mycorrhiza-responsive proteins that provided insights into the plant PM response to mycorrhizal symbiosis. Among them, the association of one third of the mycorrhiza-responsive proteins with detergent-resistant membranes pointed at partitioning to PM microdomains. The PM-associated proteins responsive to mycorrhization also supported host plant control of sugar uptake to limit fungal colonization, and lipid turnover events in the PM fraction of symbiotic roots. Because of the depletion upon symbiosis of proteins mediating the replacement of phospholipids by phosphorus-free lipids in the plasmalemma, we propose a role of phosphate nutrition in the PM composition of mycorrhizal roots.


Asunto(s)
Membrana Celular/genética , Medicago truncatula/genética , Medicago truncatula/microbiología , Proteínas de la Membrana/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Proteoma , Membrana Celular/metabolismo , Glomeromycota/fisiología , Medicago truncatula/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Simbiosis
12.
Physiol Plant ; 159(1): 13-29, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27558913

RESUMEN

During arbuscular mycorrhizal symbiosis, arbuscule-containing root cortex cells display a proliferation of plastids, a feature usually ascribed to an increased plant anabolism despite the lack of studies focusing on purified root plastids. In this study, we investigated mycorrhiza-induced changes in plastidic pathways by performing a label-free comparative subcellular quantitative proteomic analysis targeted on plastid-enriched fractions isolated from Medicago truncatula roots, coupled to a cytological analysis of plastid structure. We identified 490 root plastid protein candidates, among which 79 changed in abundance upon mycorrhization, as inferred from spectral counting. According to cross-species sequence homology searches, the mycorrhiza-responsive proteome was enriched in proteins experimentally localized in thylakoids, whereas it was depleted of proteins ascribed predominantly to amyloplasts. Consistently, the analysis of plastid morphology using transmission electron microscopy indicated that starch depletion associated with the proliferation of membrane-free and tubular membrane-containing plastids was a feature specific to arbusculated cells. The loss of enzymes involved in carbon/nitrogen assimilation and provision of reducing power, coupled to macromolecule degradation events in the plastid-enriched fraction of mycorrhizal roots that paralleled lack of starch accumulation in arbusculated cells, lead us to propose that arbuscule functioning elicits a nutrient starvation and an oxidative stress signature that may prime arbuscule breakdown.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago truncatula/fisiología , Micorrizas/fisiología , Proteoma , Medicago truncatula/microbiología , Medicago truncatula/ultraestructura , Micorrizas/ultraestructura , Proteínas de Plantas/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Raíces de Plantas/ultraestructura , Plastidios/metabolismo , Plastidios/ultraestructura , Proteómica , Simbiosis
14.
Mycorrhiza ; 27(7): 695-708, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28667402

RESUMEN

In the arbuscular mycorrhizal (AM) symbiosis, plants satisfy part of their nitrogen (N) requirement through the AM pathway. In sorghum, the ammonium transporters (AMT) AMT3;1, and to a lesser extent AMT4, are induced in cells containing developing arbuscules. Here, we have characterized orthologs of AMT3;1 and AMT4 in four other grasses in addition to sorghum. AMT3;1 and AMT4 orthologous genes are induced in AM roots, suggesting that in the common ancestor of these five plant species, both AMT3;1 and AMT4 were already present and upregulated upon AM colonization. An artificial microRNA approach was successfully used to downregulate either AMT3;1 or AMT4 in rice. Mycorrhizal root colonization and hyphal length density of knockdown plants were not affected at that time, indicating that the manipulation did not modify the establishment of the AM symbiosis and the interaction between both partners. However, expression of the fungal phosphate transporter FmPT was significantly reduced in knockdown plants, indicating a reduction of the nutrient fluxes from the AM fungus to the plant. The AMT3;1 knockdown plants (but not the AMT4 knockdown plants) were significantly less stimulated in growth by AM fungal colonization, and uptake of both 15N and 33P from the AM fungal network was reduced. This confirms that N and phosphorus nutrition through the mycorrhizal pathway are closely linked. But most importantly, it indicates that AMT3;1 is the prime plant transporter involved in the mycorrhizal ammonium transfer and that its function during uptake of N cannot be performed by AMT4.


Asunto(s)
Proteínas de Transporte de Catión/genética , Micorrizas/fisiología , Proteínas de Plantas/genética , Poaceae/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Poaceae/microbiología , Análisis de Secuencia de ADN
15.
Mycorrhiza ; 26(2): 99-110, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26070448

RESUMEN

Tuber species are ectomycorrhizal ascomycetes establishing relationships with different host trees and forming hypogeous fruiting bodies known as truffles. Among Tuber species, Tuber aestivum Vittad. has a wide distributional range being found naturally all over Europe. Here, we performed large-scale population genetic analyses in T. aestivum to (i) investigate its genetic diversity at the European scale, (ii) characterize its genetic structure and test for the presence of ecotypes and (iii) shed light into its demographic history. To reach these goals, 230 ascocarps from different populations were genotyped using 15 polymorphic simple sequence repeat markers. We identified 181 multilocus genotypes and four genetic groups which did not show a clear geographical separation; although, one of them was present exclusively in Southeast France, Italy and Spain. Fixation index values between pairs of genetic groups were generally high and ranged from 0.29 to 0.45. A significant deficit of heterozygosity indicated a population expansion instead of a recent population bottleneck, suggesting that T. aestivum is not endangered in Europe, not even in Mediterranean regions. Our study based on a large-scale population genetic analysis suggests that genetically distinct populations and likely ecotypes within T. aestivum are present. In turn, this study paves the way to future investigations aimed at addressing the biological and/or ecological factors that have concurred in shaping the population genetic structure of this species. Present results should also have implications for the truffle market since defining genetic markers are now possible at least for some specific T. aestivum genetic groups.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/genética , Variación Genética , Técnicas de Genotipaje , Técnicas de Tipificación Micológica , Micorrizas/clasificación , Micorrizas/genética , Ascomicetos/aislamiento & purificación , Europa (Continente) , Micorrizas/aislamiento & purificación , Secuencias Repetitivas de Ácidos Nucleicos
16.
Environ Microbiol ; 17(8): 3039-50, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26036799

RESUMEN

Truffles are symbiotic fungi in high demand by food connoisseurs. Improving yield and product quality requires a better understanding of truffle genetics and aroma biosynthesis. One aim here was to investigate the diversity and fine-scale spatial genetic structure of the Burgundy truffle Tuber aestivum. The second aim was to assess how genetic structuring along with fruiting body maturation and geographical origin influenced single constituents of truffle aroma. A total of 39 Burgundy truffles collected in two orchards were characterized in terms of aroma profile (SPME-GC/MS) and genotype (microsatellites). A moderate genetic differentiation was observed between the populations of the two orchards. An important seasonal and spatial genetic structuring was detected. Within one orchard, individuals belonging to the same genet were generally collected during a single season and in the close vicinity from each other. Maximum genet size nevertheless ranged from 46 to 92 m. Geographical origin or maturity only had minor effects on aroma profiles but genetic structuring, specifically clonal identity, had a pronounced influence on the concentrations of C8 - and C4 -VOCs. Our results highlight a high seasonal genetic turnover and indicate that the aroma of Burgundy truffle is influenced by the identity of single clones/genets.


Asunto(s)
Ascomicetos/genética , Cuerpos Fructíferos de los Hongos/genética , Odorantes/análisis , Ascomicetos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Variación Genética/genética , Genotipo , Geografía , Repeticiones de Microsatélite/genética
17.
Plant J ; 76(6): 982-96, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24118112

RESUMEN

Reductions in sulfur dioxide emissions and the use of sulfur-free mineral fertilizers are decreasing soil sulfur levels and threaten the adequate fertilization of most crops. To provide knowledge regarding legume adaptation to sulfur restriction, we subjected Medicago truncatula, a model legume species, to sulfur deficiency at various developmental stages, and compared the yield, nutrient allocation and seed traits. This comparative analysis revealed that sulfur deficiency at the mid-vegetative stage decreased yield and altered the allocation of nitrogen and carbon to seeds, leading to reduced levels of major oligosaccharides in mature seeds, whose germination was dramatically affected. In contrast, during the reproductive period, sulfur deficiency had little influence on yield and nutrient allocation, but the seeds germinated slowly and were characterized by low levels of a biotinylated protein, a putative indicator of germination vigor that has not been previously related to sulfur nutrition. Significantly, plants deprived of sulfur at an intermediary stage (flowering) adapted well by remobilizing nutrients from source organs to seeds, ensuring adequate quantities of carbon and nitrogen in seeds. This efficient remobilization of photosynthates may be explained by vacuolar sulfate efflux to maintain leaf metabolism throughout reproductive growth, as suggested by transcript and metabolite profiling. The seeds from these plants, deprived of sulfur at the floral transition, contained normal levels of major oligosaccharides but their germination was delayed, consistent with low levels of sucrose and the glycolytic enzymes required to restart seed metabolism during imbibition. Overall, our findings provide an integrative view of the legume response to sulfur deficiency.


Asunto(s)
Adaptación Fisiológica , Medicago truncatula/fisiología , Semillas/fisiología , Azufre/deficiencia , Transporte Biológico , Biomasa , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Clorofila/metabolismo , Medicago truncatula/genética , Medicago truncatula/crecimiento & desarrollo , Modelos Biológicos , Nitrógeno/metabolismo , Oligosacáridos/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , ARN Mensajero/genética , Rafinosa/metabolismo , Semillas/genética , Semillas/crecimiento & desarrollo , Sulfatos/metabolismo , Azufre/metabolismo
18.
BMC Plant Biol ; 14: 255, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25267185

RESUMEN

BACKGROUND: Membrane microdomains are defined as highly dynamic, sterol- and sphingolipid-enriched domains that resist to solubilization by non-ionic detergents. In plants, these so-called Detergent Insoluble Membrane (DIM) fractions have been isolated from plasma membrane by using conventional ultracentrifugation on density gradient (G). In animals, a rapid (R) protocol, based on sedimentation at low speed, which avoids the time-consuming sucrose gradient, has also been developed to recover DIMs from microsomes as starting material. In the current study, we sought to compare the ability of the Rapid protocol versus the Gradient one for isolating DIMs directly from microsomes of M. truncatula roots. For that purpose, Triton X-100 detergent-insoluble fractions recovered with the two methods were analyzed and compared for their sterol/sphingolipid content and proteome profiles. RESULTS: Inferred from sterol enrichment, presence of typical sphingolipid long-chain bases from plants and canonical DIM protein markers, the possibility to prepare DIMs from M. truncatula root microsomes was confirmed both for the Rapid and Gradient protocols. Contrary to sphingolipids, the sterol and protein profiles of DIMs were found to depend on the method used. Namely, DIM fractions were differentially enriched in spinasterol and only shared 39% of common proteins as assessed by GeLC-MS/MS profiling. Quantitative analysis of protein indicated that each purification procedure generated a specific subset of DIM-enriched proteins from Medicago root microsomes. Remarkably, these two proteomes were found to display specific cellular localizations and biological functions. In silico analysis of membrane-associative features within R- and G-enriched proteins, relative to microsomes, showed that the most noticeable difference between the two proteomes corresponded to an increase in the proportion of predicted signal peptide-containing proteins after sedimentation (R) compared to its decrease after floatation (G), suggesting that secreted proteins likely contribute to the specificity of the R-DIM proteome. CONCLUSIONS: Even though microsomes were used as initial material, we showed that the protein composition of the G-DIM fraction still mostly mirrored that of plasmalemma-originating DIMs conventionally retrieved by floatation. In parallel, the possibility to isolate by low speed sedimentation DIM fractions that seem to target the late secretory pathway supports the existence of plant microdomains in other organelles.


Asunto(s)
Membrana Celular/química , Medicago truncatula , Microsomas , Raíces de Plantas , Detergentes/química , Microdominios de Membrana/química , Solubilidad
19.
Trends Plant Sci ; 29(5): 524-534, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565452

RESUMEN

Plant-microbe interactions (PMIs) are regulated through a wide range of mechanisms in which sterols from plants and microbes are involved in numerous ways, including recognition, transduction, communication, and/or exchanges between partners. Phytosterol equilibrium is regulated by PMIs through expression of genes involved in phytosterol biosynthesis, together with their accumulation. As such, PMI outcomes also include plasma membrane (PM) functionalization events, in which phytosterols have a central role, and activation of sterol-interacting proteins involved in cell signaling. In spite (or perhaps because) of such multifaceted abilities, an overall mechanism of sterol contribution is difficult to determine. However, promising approaches exploring sterol diversity, their contribution to PMI outcomes, and their localization would help us to decipher their crucial role in PMIs.


Asunto(s)
Interacciones Microbiota-Huesped , Plantas , Esteroles , Interacciones Microbiota-Huesped/fisiología , Fitosteroles/metabolismo , Plantas/metabolismo , Plantas/microbiología , Transducción de Señal , Esteroles/metabolismo
20.
New Phytol ; 199(1): 188-202, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23506613

RESUMEN

Arbuscular mycorrhizal (AM) symbiosis is stimulated by phosphorus (P) limitation and contributes to P and nitrogen (N) acquisition. However, the effects of combined P and N limitation on AM formation are largely unknown. Medicago truncatula plants were cultivated in the presence or absence of Rhizophagus irregularis (formerly Glomus intraradices) in P-limited (LP), N-limited (LN) or combined P- and N-limited (LPN) conditions, and compared with plants grown in sufficient P and N. The highest AM formation was observed in LPN, linked to systemic signaling by the plant nutrient status. Plant free phosphate concentrations were higher in LPN than in LP, as a result of cross-talk between P and N. Transcriptome analyses suggest that LPN induces the activation of NADPH oxidases in roots, concomitant with an altered profile of plant defense genes and a coordinate increase in the expression of genes involved in the methylerythritol phosphate and isoprenoid-derived pathways, including strigolactone synthesis genes. Taken together, these results suggest that low P and N fertilization systemically induces a physiological state of plants favorable for AM symbiosis despite their higher P status. Our findings highlight the importance of the plant nutrient status in controlling plant-fungus interaction.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Micorrizas/fisiología , Nitrógeno/metabolismo , Fosfatos/metabolismo , Simbiosis/fisiología , Eritritol/análogos & derivados , Eritritol/genética , Eritritol/metabolismo , Regulación de la Expresión Génica de las Plantas , Glomeromycota/fisiología , Medicago truncatula/genética , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Transducción de Señal/genética , Estrés Fisiológico , Fosfatos de Azúcar/genética , Fosfatos de Azúcar/metabolismo , Terpenos/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA