Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Am J Nephrol ; 53(7): 552-564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35675794

RESUMEN

INTRODUCTION: Chronic activation of the mineralocorticoid receptor (MR) leads to pathological processes like inflammation and fibrosis during cardiorenal disease. Modulation of immunological processes in the heart or kidney may serve as a mechanistic and therapeutic interface in cardiorenal pathologies. In this study, we investigated anti-inflammatory/-fibrotic and immunological effects of the selective nonsteroidal MR antagonists finerenone (FIN) in the deoxycorticosterone acetate (DOCA)-salt model. METHODS: Male C57BL6/J mice were uninephrectomized and received a DOCA pellet implantation (2.4 mg/day) plus 0.9% NaCl in drinking water (DOCA-salt) or received a sham operation and were orally treated with FIN (10 mg/kg/day) or vehicle in a preventive study design. Five weeks after the procedure, blood pressure (BP), urinary albumin/creatinine ratio (UACR), glomerular and tubulointerstitial damage, echocardiographic cardiac function, as well as cardiac/renal inflammatory cell content by FACS analysis were assessed. RESULTS: BP was significantly reduced by FIN. FACS analysis revealed a notable immune response due to DOCA-salt exposure. Especially, infiltrating renal RORγt γδ-positive T cells were upregulated, which was significantly ameliorated by FIN treatment. This was accompanied by a significant reduction of UACR in FIN-treated mice. In the heart, FIN reduced DOCA-salt-induced cardiac hypertrophy, cardiac fibrosis and led to an improvement of the global longitudinal strain. Cardiac actions of FIN were not associated with a regulation of cardiac RORγt γδ-positive T cells. DISCUSSION/CONCLUSION: The present study shows cardiac and renal protective effects of FIN in a DOCA-salt model. The cardiorenal protection was accompanied by a reduction of renal RORγt γδ T cells. The observed actions of FIN may provide a potential mechanism of its efficacy recently observed in clinical trials.


Asunto(s)
Hipertensión Renal , Hipertensión , Naftiridinas , Linfocitos T , Animales , Presión Sanguínea , Acetato de Desoxicorticosterona , Fibrosis , Hipertensión/tratamiento farmacológico , Hipertensión Renal/patología , Riñón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Naftiridinas/farmacología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/uso terapéutico
2.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071318

RESUMEN

Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Receptores de Tirotropina/metabolismo , Células Epiteliales Tiroideas/metabolismo , Glándula Tiroides/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Catepsina K/deficiencia , Catepsina K/genética , Catepsina K/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Tiroglobulina/metabolismo , Glándula Tiroides/citología , Hormonas Tiroideas/metabolismo , Tirotropina/sangre , Tirotropina/metabolismo
3.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466458

RESUMEN

The thyroid gland is both a thyroid hormone (TH) generating as well as a TH responsive organ. It is hence crucial that cathepsin-mediated proteolytic cleavage of the precursor thyroglobulin is regulated and integrated with the subsequent export of TH into the blood circulation, which is enabled by TH transporters such as monocarboxylate transporters Mct8 and Mct10. Previously, we showed that cathepsin K-deficient mice exhibit the phenomenon of functional compensation through cathepsin L upregulation, which is independent of the canonical hypothalamus-pituitary-thyroid axis, thus, due to auto-regulation. Since these animals also feature enhanced Mct8 expression, we aimed to understand if TH transporters are part of the thyroid auto-regulatory mechanisms. Therefore, we analyzed phenotypic differences in thyroid function arising from combined cathepsin K and TH transporter deficiencies, i.e., in Ctsk-/-/Mct10-/-, Ctsk-/-/Mct8-/y, and Ctsk-/-/Mct8-/y/Mct10-/-. Despite the impaired TH export, thyroglobulin degradation was enhanced in the mice lacking Mct8, particularly in the triple-deficient genotype, due to increased cathepsin amounts and enhanced cysteine peptidase activities, leading to ongoing thyroglobulin proteolysis for TH liberation, eventually causing self-thyrotoxic thyroid states. The increased cathepsin amounts were a consequence of autophagy-mediated lysosomal biogenesis that is possibly triggered due to the stress accompanying intrathyroidal TH accumulation, in particular in the Ctsk-/-/Mct8-/y/Mct10-/- animals. Collectively, our data points to the notion that the absence of cathepsin K and Mct8 leads to excessive thyroglobulin degradation and TH liberation in a non-classical pathway of thyroid auto-regulation.


Asunto(s)
Autofagia/fisiología , Catepsina K/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Tiroglobulina/metabolismo , Glándula Tiroides/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Transporte Biológico , Catepsina L/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Hipófisis/metabolismo
4.
Cell Mol Neurobiol ; 40(5): 695-710, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31808010

RESUMEN

Cathepsin K deficiency in male mice (Ctsk-/-) results in decreased numbers of hippocampal astrocytes and altered neuronal patterning as well as learning and memory deficits. Additionally, cathepsin K carries essential roles in the thyroid gland where it contributes to the liberation of thyroid hormones (TH). Because TH are essential for brain development, in particular for the cerebellum, we investigated whether cathepsin K's function in the thyroid is directly linked to the brain phenotype of Ctsk-/- mice. Serum levels of thyroid stimulating hormone, brain concentrations of free TH, and deiodinase 2 (Dio2) activity in brain parenchyma as well as cerebellar development were comparable in Ctsk-/- and WT animals, suggesting regular thyroid states and TH metabolism. Despite unaltered transcript levels, protein expression of two TH transporters was enhanced in specific brain regions in Ctsk-/- mice, suggesting altered TH supply to these regions. Thyrotropin releasing hormone (Trh) mRNA levels were enhanced threefold in the hippocampus of Ctsk-/- mice. In the striatum of Ctsk-/- mice the mRNA for Dio2 and hairless were approximately 1.3-fold enhanced, while mRNA levels for monocarboxylate transporter 8 and Trh were reduced to 60% and 40%, respectively, pointing to altered striatal physiology. We conclude that the role of cathepsin K in the thyroid gland is not directly associated with its function in the central nervous system (CNS) of mice. Future studies will show whether the brain region-specific alterations in Trh mRNA may eventually result in altered neuroprotection that could explain the neurobehavioral defects of Ctsk-/- mice.


Asunto(s)
Catepsina K/fisiología , Sistema Nervioso Central/enzimología , Glándula Tiroides/enzimología , Animales , Catepsina K/genética , Cerebelo/enzimología , Cerebelo/crecimiento & desarrollo , Masculino , Ratones , Ratones Noqueados , ARN Mensajero/análisis , Tirotropina/sangre , Tiroxina/sangre , Triyodotironina/sangre
5.
Diabetologia ; 58(2): 374-83, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25348610

RESUMEN

AIMS/HYPOTHESIS: High intake of carbohydrates, particularly sucrose, in western societies is associated with the development of non-alcoholic fatty liver (NAFL) and diabetes mellitus. It is unclear whether this is related primarily to the carbohydrate quantity or to the hormonal responses, particularly glucose-dependent insulinotropic polypeptide (GIP), which is released in the proximal intestine. Therefore, we investigated the role of GIP by comparing two glucose-fructose dimers, sucrose and Palatinose (isomaltulose), resorbed proximally or distally. METHODS: The glycaemic and incretin responses to sucrose and Palatinose were studied by oral gavage and meal tests. We then analysed phenotypic and metabolic diet-induced changes in C57Bl/6J mice exposed to isoenergetic diets differing in carbohydrate type. Studies were repeated in GIP receptor knockout (Gipr(-/-)) mice and their wild-type littermates. RESULTS: Compared with sucrose, Palatinose intake resulted in slower glucose absorption and reduced postprandial insulin and GIP levels. After 22 weeks, Palatinose feeding prevented hepatic steatosis (48.5%) compared with sucrose and improved glucose tolerance, without differences in body composition and food intake. Ablation of GIP signalling in Gipr(-/-) mice completely prevented the deleterious metabolic effects of sucrose feeding. Furthermore, our microarray analysis indicated that sucrose increased 2.3-fold the hepatic expression of Socs2, which is involved in the growth hormone signalling pathway and participates in the development of NAFL. CONCLUSIONS/INTERPRETATION: Our results suggest that the site of glucose absorption and the GIP response determine liver fat accumulation and insulin resistance. GIP may play a role in sucrose induced fatty liver by regulating the expression of Socs2.


Asunto(s)
Hígado Graso/patología , Polipéptido Inhibidor Gástrico/metabolismo , Resistencia a la Insulina , Sacarosa/metabolismo , Animales , Dieta , Hígado Graso/prevención & control , Absorción Intestinal , Isomaltosa/análogos & derivados , Isomaltosa/metabolismo , Isomaltosa/farmacología , Masculino , Ratones , Receptores de la Hormona Gastrointestinal/metabolismo , Sacarosa/farmacología
6.
Horm Behav ; 75: 120-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26435475

RESUMEN

Thyroid hormones (TH) play a key role in regulation of seasonal as well as acute changes in metabolism. Djungarian hamsters (Phodopus sungorus) adapt to winter by multiple changes in behaviour and physiology including spontaneous daily torpor, a state of hypometabolism and hypothermia. We investigated effects of systemic TH administration and ablation on the torpor behaviour in Djungarian hamsters adapted to short photoperiod. Hyperthyroidism was induced by giving T4 or T3 and hypothyroidism by giving methimazole (MMI) and sodium perchlorate via drinking water. T3 treatment increased water, food intake and body mass, whereas MMI had the opposite effect. Continuous recording of body temperature revealed that low T3 serum concentrations increased torpor incidence, lowered Tb and duration, whereas high T3 serum concentrations inhibited torpor expression. Gene expression of deiodinases (dio) and uncoupling proteins (ucp) were analysed by qPCR in hypothalamus, brown adipose tissue (BAT) and skeletal muscle. Expression of dio2, the enzyme generating T3 by deiodination of T4, and ucps, involved in thermoregulation, indicated a tissue specific response to treatment. Torpor per se decreased dio2 expression irrespective of treatment or tissue, suggesting low intracellular T3 concentrations during torpor. Down regulation of ucp1 and ucp3 during torpor might be a factor for the inhibition of BAT thermogenesis. Hypothalamic gene expression of neuropeptide Y, propopiomelanocortin and somatostatin, involved in feeding behaviour and energy balance, were not affected by treatment. Taken together our data indicate a strong effect of thyroid hormones on torpor, suggesting that lowered intracellular T3 concentrations in peripheral tissues promote torpor.


Asunto(s)
Phodopus/fisiología , Hormonas Tiroideas/metabolismo , Hormonas Tiroideas/farmacología , Letargo/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Animales , Temperatura Corporal/fisiología , Regulación de la Temperatura Corporal/efectos de los fármacos , Regulación de la Temperatura Corporal/genética , Cricetinae , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Metabolismo Energético/fisiología , Femenino , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Phodopus/genética , Fotoperiodo , Estaciones del Año , Letargo/genética
7.
Biochem J ; 462(1): 67-75, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24844465

RESUMEN

Secisbp2 [SECIS (selenocysteine insertion sequence)-binding protein 2] binds to SECIS elements located in the 3'-UTR region of eukaryotic selenoprotein mRNAs. It facilitates the incorporation of the rare amino acid selenocysteine in response to UGA codons. Inactivation of Secisbp2 in hepatocytes greatly reduced selenoprotein levels. Neuron-specific inactivation of Secisbp2 (CamK-Cre; Secisbp2fl/fl) reduced cerebral expression of selenoproteins to a lesser extent than inactivation of tRNA[Ser]Sec. This allowed us to study the development of cortical PV (parvalbumin)+ interneurons, which are completely lost in tRNA[Ser]Sec mutants. PV+ interneuron density was reduced in the somatosensory cortex, hippocampus and striatum. In situ hybridization for Gad67 (glutamic acid decarboxylase 67) confirmed the reduction of GABAergic (where GABA is γ-aminobutyric acid) interneurons. Because of the obvious movement phenotype involving a broad dystonic gait, we suspected basal ganglia dysfunction. Tyrosine hydroxylase expression was normal in substantia nigra neurons and their striatal terminals. However the densities of striatal PV+ and Gad67+ neurons were decreased by 65% and 49% respectively. Likewise, the density of striatal cholinergic neurons was reduced by 68%. Our observations demonstrate that several classes of striatal interneurons depend on selenoprotein expression. These findings may offer an explanation for the movement phenotype of selenoprotein P-deficient mice and the movement disorder and mental retardation described in a patient carrying SECISBP2 mutations.


Asunto(s)
Cuerpo Estriado/metabolismo , Interneuronas/fisiología , Proteínas de Unión al ARN/genética , Selenoproteínas/biosíntesis , Animales , Glutamato Descarboxilasa/biosíntesis , Ratones , Trastornos del Movimiento/genética , Parvalbúminas/biosíntesis , Selenocisteína/metabolismo , Corteza Somatosensorial/metabolismo
8.
J Mol Endocrinol ; 70(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36129170

RESUMEN

Proteolytic cleavage of thyroglobulin (Tg) for thyroid hormone (TH) liberation is followed by TH release from thyroid follicles into the circulation, enabled by TH transporters. The existence of a functional link between Tg-processing cathepsin proteases and TH transporters has been shown to be independent of the hypothalamus-pituitary-thyroid axis. Thus, lack of cathepsin K, combined with genetic defects in the TH transporters Mct8 and Mct10, that is the Ctsk-/-/Mct8-/y/Mct10-/- genotype, results in persistent Tg proteolysis due to autophagy induction. Because amino acid transport by L-type amino acid transporter 2 (Lat2) has been described to regulate autophagy, we asked whether Lat2 availability is affected in Ctsk-/-/Mct8-/y/Mct10-/- thyroid glands. Our data revealed that while mRNA amounts and subcellular localization of Lat2 remained unaltered in thyroid tissue of Ctsk-/-/Mct8-/y/Mct10-/- mice in comparison to WT controls, the Lat2 protein amounts were significantly reduced. These data suggest a direct link between Lat2 function and autophagy induction in Ctsk-/-/Mct8-/y/Mct10-/- mice. Indeed, thyroid tissue of Lat2-/- mice showed enhanced endo-lysosomal cathepsin activities, increased autophagosome formation, and enhanced autophagic flux. Collectively, these results suggest a mechanistic link between insufficient Lat2 protein function and autophagy induction in the thyroid gland of male mice.


Asunto(s)
Sistemas de Transporte de Aminoácidos , Autofagia , Glándula Tiroides , Animales , Masculino , Ratones , Autofagia/genética , Catepsinas , Genotipo
9.
Int J Cancer ; 131(9): 2187-96, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22336965

RESUMEN

Cachexia is a common co-morbidity in cancer occurring in up to 80% of patients depending on the type of cancer. Uric acid (UA), the end-product of the purine metabolism, is elevated in cachexia due to tissue wasting and upregulated xanthine oxidase (XO) activity. High serum UA levels indicate increased XO-dependent production of oxygen free radicals (reactive oxygen species; ROS) and correlate with metabolic illness and poor survival. We hypothesized that XO-inhibition might reduce inflammatory signals accounting for tissue wasting and improve survival in experimental cancer cachexia. Animals were inoculated intraperitoneally with AH-130 hepatoma cells and treated with two XO-inhibitors: allopurinol [Allo, low (LD) and high dose (HD) 4 and 40 mg/kg/d] and its more effective active metabolite oxypurinol (Oxy, 4 and 40 mg/kg/d) or placebo for 15 days. Weight loss and tissue wasting of both fat and lean tissue (assessed by NMR-scanning) was reduced by both LD and HD Allo and LD-Oxy, but not by HD-Oxy. A robust induction of XO-activity for generation of reactive oxygen species was seen in the placebo group (assessed by electron paramagnetic spectroscopy), which was reduced by XO-inhibition. Increased ROS induced cytokine signaling, proteolytic activity and tissue degradation were all attenuated by XO inhibition. Survival was significantly and dose dependently improved. Food intake and spontaneous locomotor activity were higher, indicating a higher quality of life. Inhibition of XO can reduce tissue wasting and improve survival in cancer cachexia and clearly clinical studies are needed.


Asunto(s)
Alopurinol/farmacología , Caquexia/tratamiento farmacológico , Neoplasias/complicaciones , Oxipurinol/farmacología , Xantina Oxidasa/antagonistas & inhibidores , Animales , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Caquexia/etiología , Caquexia/metabolismo , Caspasa 3/metabolismo , Inhibidores Enzimáticos/farmacología , Masculino , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Distribución Aleatoria , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Resultado del Tratamiento , Ácido Úrico/sangre
10.
Biochem J ; 439(2): 249-55, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21726201

RESUMEN

LAT2 (system L amino acid transporter 2) is composed of the subunits Slc7a8/Lat2 and Slc3a2/4F2hc. This transporter is highly expressed along the basolateral membranes of absorptive epithelia in kidney and small intestine, but is also abundant in the brain. Lat2 is an energy-independent exchanger of neutral amino acids, and was shown to transport thyroid hormones. We report in the present paper that targeted inactivation of Slc7a8 leads to increased urinary loss of small neutral amino acids. Development and growth of Slc7a8(-/-) mice appears normal, suggesting functional compensation of neutral amino acid transport by alternative transporters in kidney, intestine and placenta. Movement co-ordination is slightly impaired in mutant mice, although cerebellar development and structure remained inconspicuous. Circulating thyroid hormones, thyrotropin and thyroid hormone-responsive genes remained unchanged in Slc7a8(-/-) mice, possibly because of functional compensation by the thyroid hormone transporter Mct8 (monocarboxylate transporter 8), which is co-expressed in many cell types. The reason for the mild neurological phenotype remains unresolved.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/sangre , Sistema de Transporte de Aminoácidos y+/metabolismo , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Transducción de Señal , Hormonas Tiroideas/sangre , Sistema de Transporte de Aminoácidos y+/genética , Animales , Secuencia de Bases , Western Blotting , Encéfalo/crecimiento & desarrollo , Cartilla de ADN , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/genética , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena de la Polimerasa
11.
Metabolites ; 12(7)2022 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-35888706

RESUMEN

Thyroid hormones, their metabolites, and synthetic analogues are potential anti-steatotic drug candidates considering that subclinical and manifest hypothyroidism is associated with hepatic lipid accumulation, non-alcoholic fatty liver disease, and its pandemic sequelae. Thyromimetically active compounds stimulate hepatic lipogenesis, fatty acid beta-oxidation, cholesterol metabolism, and metabolic pathways of glucose homeostasis. Many of these effects are mediated by T3 receptor ß1-dependent modulation of transcription. However, rapid non-canonical mitochondrial effects have also been reported, especially for the metabolite 3,5-diiodothyronine (3,5-T2), which does not elicit the full spectrum of "thyromimetic" actions inherent to T3. Most preclinical studies in rodent models of obesity and first human clinical trials are promising with respect to the antisteatotic hepatic effects, but potent agents exhibit unwanted thyromimetic effects on the heart and/or suppress feedback regulation of the hypothalamus-pituitary-thyroid-periphery axis and the fine-tuned thyroid hormone system. This narrative review focuses on 3,5-T2 effects on hepatic lipid and glucose metabolism and (non-)canonical mechanisms of action including its mitochondrial targets. Various high fat diet animal models with distinct thyroid hormone status indicate species- and dose-dependent efficiency of 3,5-T2 and its synthetic analogue TRC150094. No convincing evidence has been presented for their clinical use in the prevention or treatment of obesity and related metabolic conditions.

12.
Expert Rev Endocrinol Metab ; 17(5): 425-434, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35957531

RESUMEN

INTRODUCTION: Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide and closely interconnected to the metabolic syndrome. Liver-specific and systemic signaling pathways orchestrating glucose and fatty acid metabolism contribute to intrahepatic accumulation of lipids and inflammatory processes eventually causing disease progression to nonalcoholic steatohepatitis (NASH), liver fibrosis, and cirrhosis. Since a high number of key regulatory genes regarding liver homeostasis are directly mediated via thyroid hormone (TH) signaling, targeting TH receptors (TRs) represent a promising therapeutic potential for the treatment of NAFLD. AREAS COVERED: In this review, we elucidate the effects of TH on metabolic regulations in the liver via local availability and actions. We discuss recent advances and the potential impact of thyromimetics in basic research and clinical trials including liver-targeted and TRß-specific agents for the treatment of NAFLD. EXPERT OPINION: Unselective TR targeting can be accompanied by negative side effects due to high TRß expression in other organs and TRα-mediated effects. Recent advances in drug development and the introduction of liver-targeted thyromimetics selectively activating TRß such as Resmetirom (MGL-3196) and VK2809 bring new hope of translating the knowledge on local TH effects into effective hepatic lipid-clearing therapies against NASH.


Asunto(s)
Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Progresión de la Enfermedad , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Hormonas Tiroideas/uso terapéutico
13.
Toxicol Lett ; 354: 44-55, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757178

RESUMEN

Disruption of the thyroid hormone system during development can impair brain development and cause irreversible damage. Some thyroid hormone system disruptors act by inhibiting the thyroperoxidase (TPO) enzyme, which is key to thyroid hormone synthesis. For the potent TPO-inhibiting drug propylthiouracil (PTU) this has been shown to result in thyroid hormone system disruption and altered brain development in animal studies. However, an outstanding question is which chemicals beside PTU can cause similar effects on brain development and to what degree thyroid hormone insufficiency must be induced to be able to measure adverse effects in rats and their offspring. To start answering these questions, we performed a perinatal exposure study in pregnant rats with two TPO-inhibitors: the drug methimazole (MMI) and the triazole herbicide amitrole. The study involved maternal exposure from gestational day 7 through to postnatal day 22, to MMI (8 and 16 mg/kg body weight/day) or amitrole (25 and 50 mg/kg body weight/day). Both MMI and amitrole reduced serum T4 concentrations in a dose-dependent manner in dams and offspring, with a strong activation of the hypothalamic-pituitary-thyroid axis. This reduction in serum T4 led to decreased thyroid hormone-mediated gene expression in the offspring's brains and caused adverse effects on brain function, seen as hyperactivity and decreased habituation in preweaning pups. These dose-dependent effects induced by MMI and amitrole are largely the same as those observed with PTU. This demonstrates that potent TPO-inhibitors can induce effects on brain development in rats and that these effects are driven by T4 deficiency. This knowledge will aid the identification of TPO-inhibiting thyroid hormone system disruptors in a regulatory context and can serve as a starting point in search of more sensitive markers of developmental thyroid hormone system disruption.


Asunto(s)
Amitrol (Herbicida)/toxicidad , Antitiroideos/toxicidad , Inhibidores Enzimáticos/toxicidad , Metimazol/toxicidad , Actividad Motora/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Glándula Tiroides/efectos de los fármacos , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Femenino , Exposición Materna/efectos adversos , Síndromes de Neurotoxicidad/fisiopatología , Embarazo , Ratas , Transducción de Señal/efectos de los fármacos , Pruebas de Función de la Tiroides
14.
Redox Biol ; 57: 102490, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36182809

RESUMEN

Mice with constitutive disruption of the Selenop gene have been key to delineate the importance of selenoproteins in neurobiology. However, the phenotype of this mouse model is exquisitely dependent on selenium supply and timing of selenium supplementation. Combining biochemical, histological, and behavioral methods, we tested the hypothesis that parvalbumin-expressing interneurons in the primary somatosensory cortex and hippocampus depend on dietary selenium availability in Selenop-/- mice. Selenop-deficient mice kept on adequate selenium diet (0.15 mg/kg, i.e. the recommended dietary allowance, RDA) developed ataxia, tremor, and hyperexcitability between the age of 4-5 weeks. Video-electroencephalography demonstrated epileptic seizures in Selenop-/- mice fed the RDA diet, while Selenop± heterozygous mice behaved normally. Both neurological phenotypes, hyperexcitability/seizures and ataxia/dystonia were successfully prevented by selenium supplementation from birth or transgenic expression of human SELENOP under a hepatocyte-specific promoter. Selenium supplementation with 10 µM selenite in the drinking water on top of the RDA diet increased the activity of glutathione peroxidase in the brains of Selenop-/- mice to control levels. The effects of selenium supplementation on the neurological phenotypes were dose- and time-dependent. Selenium supplementation after weaning was apparently too late to prevent ataxia/dystonia, while selenium withdrawal from rescued Selenop-/- mice eventually resulted in ataxia. We conclude that SELENOP expression is essential for preserving interneuron survival under limiting Se supply, while SELENOP appears dispensable under sufficiently high Se status.

15.
Glia ; 59(3): 463-71, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21264952

RESUMEN

Cellular thyroid hormone uptake and efflux are mediated by transmembrane transport proteins. One of these, monocarboxylate transporter 8 (MCT8) is mutated in Allan-Herndon-Dudley syndrome, a severe mental retardation associated with abnormal thyroid hormone constellations. Since mice deficient in Mct8 exhibit a milder neurological phenotype than patients, we hypothesized that alternative thyroid hormone transporters may compensate in murine brain cells for the lack of Mct8. Using qPCR, Western Blot, and immunocytochemistry, we investigated the expression of three different thyroid hormone transporters, i.e., Mct8 and L-type amino acid transporters Lat1 and Lat2, in mouse brain. All three thyroid hormone transporters are expressed from corticogenesis and peak around birth. Primary cultures of neurons and astrocytes express Mct8, Lat1, and Lat2. Microglia specifically expresses Mct10 and Slco4a1 in addition to high levels of Lat2 mRNA and protein. As in vivo, a brain microvascular endothelial cell line expressed Mct8 and Lat1. 158N, an oligodendroglial cell line expressed Mct8 protein, consistent with delayed myelination in MCT8-deficient patients. Functional T(3)- and T(4)-transport assays into primary astrocytes showed K(M) values of 4.2 and 3.7 µM for T(3) and T(4). Pharmacological inhibition of L-type amino acid transporters by BCH and genetic inactivation of Lat2 reduced astrocytic T(3) uptake to the same extent. BSP, a broad spectrum inhibitor, including Mct8, reduced T(3) uptake further suggesting the cooperative activity of several T(3) transporters in astrocytes.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Transporte de Membrana/genética , Neuronas/metabolismo , Tiroxina/metabolismo , Triyodotironina/metabolismo , Sistema de Transporte de Aminoácidos y+/biosíntesis , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+L , Animales , Animales Recién Nacidos , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/citología , Línea Celular , Células Cultivadas , Técnicas de Cocultivo , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/biosíntesis , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos , Neuronas/citología , Transporte de Proteínas/fisiología , Simportadores
16.
FASEB J ; 24(3): 844-52, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19890015

RESUMEN

Cerebral selenium (Se) deficiency is associated with neurological phenotypes including seizures and ataxia. We wanted to define whether neurons require selenoprotein expression and which selenoproteins are most important, and explore the possible pathomechanism. Therefore, we abrogated the expression of all selenoproteins in neurons by genetic inactivation of the tRNA[Ser](Sec) gene. Cerebral expression of selenoproteins was significantly diminished in the mutants, and histological analysis revealed progressive neurodegeneration. Developing interneurons failed to specifically express parvalbumin (PV) in the mutants. Electrophysiological recordings, before overt cell death, showed normal excitatory transmission, but revealed spontaneous epileptiform activity consistent with seizures in the mutants. In developing cortical neuron cultures, the number of PV(+) neurons was reduced on combined Se and vitamin E deprivation, while other markers, such as calretinin (CR) and GAD67, remained unaffected. Because of the synergism between Se and vitamin E, we analyzed mice lacking neuronal expression of the Se-dependent enzyme glutathione peroxidase 4 (GPx4). Although the number of CR(+) interneurons remained normal in Gpx4-mutant mice, the number of PV(+) interneurons was reduced. Since these mice similarly exhibit seizures and ataxia, we conclude that GPx4 is a selenoenzyme modulating interneuron function and PV expression. Cerebral SE deficiency may thus act via reduced GPx4 expression.-Wirth, E. K., Conrad, M., Winterer, J., Wozny, C., Carlson, B. A., Roth, S., Schmitz, D., Bornkamm, G. W., Coppola, V., Tessarollo, L., Schomburg, L., Köhrle, J., Hatfield, D. L., Schweizer, U. Neuronal selenoprotein expression is required for interneuron development and prevents seizures and neurodegeneration.


Asunto(s)
Interneuronas/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/prevención & control , Convulsiones/metabolismo , Convulsiones/prevención & control , Selenoproteínas/fisiología , Animales , Western Blotting , Calbindina 2 , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Electrofisiología , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/fisiología , Inmunohistoquímica , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Ratones , Ratones Noqueados , Parvalbúminas/metabolismo , Parvalbúminas/fisiología , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Aminoacil-ARN de Transferencia/genética , Aminoacil-ARN de Transferencia/fisiología , Proteína G de Unión al Calcio S100/metabolismo , Proteína G de Unión al Calcio S100/fisiología , Selenio/farmacología , Selenoproteínas/metabolismo , Vitamina E/farmacología
17.
Environ Pollut ; 283: 117135, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33892370

RESUMEN

The thyroperoxidase (TPO) enzyme is expressed by the thyroid follicular cells and is required for thyroid hormone synthesis. In turn, thyroid hormones are essential for brain development, thus inhibition of TPO in early life can have life-long consequences for brain function. If environmental chemicals with the capacity to inhibit TPO in vitro can also alter brain development in vivo through thyroid hormone dependent mechanisms, however, remains unknown. In this study we show that the in vitro TPO inhibiting pesticide amitrole alters neuronal migration and induces periventricular heterotopia; a thyroid hormone dependent brain malformation. Perinatal exposure to amitrole reduced pup serum thyroxine (T4) concentrations to less than 50% of control animals and this insufficiency led to heterotopia formation in the 16-day old pup's brain. Two other in vitro TPO inhibitors, 2-mercaptobenzimidazole and cyanamide, caused reproductive toxicity and had only minor sporadic effects on the thyroid hormone system; consequently, they did not cause heterotopia. This is the first demonstration of an environmental chemical causing heterotopia, a brain malformation until now only reported for rodent studies with the anti-thyroid drugs propylthiouracil and methimazole. Our results highlight that certain TPO-inhibiting environmental chemicals can alter brain development through thyroid hormone dependent mechanisms. Improved understanding of the effects on the brain as well as the conditions under which chemicals can perturb brain development will be key to protect human health.


Asunto(s)
Yoduro Peroxidasa , Propiltiouracilo , Animales , Metimazol/toxicidad , Ratas , Glándula Tiroides , Hormonas Tiroideas
18.
iScience ; 24(4): 102288, 2021 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-33889813

RESUMEN

The cross talk between adipose tissue and the heart has an increasing importance for cardiac function under physiological and pathological conditions. This study characterizes the role of fat body lipolysis for cardiac function in Drosophila melanogaster. Perturbation of the function of the key lipolytic enzyme, brummer (bmm), an ortholog of the mammalian ATGL (adipose triglyceride lipase) exclusively in the fly's fat body, protected the heart against starvation-induced dysfunction. We further provide evidence that this protection is caused by the preservation of glycerolipid stores, resulting in a starvation-resistant maintenance of energy supply and adequate cardiac ATP synthesis. Finally, we suggest that alterations of lipolysis are tightly coupled to lipogenic processes, participating in the preservation of lipid energy substrates during starvation. Thus, we identified the inhibition of adipose tissue lipolysis and subsequent energy preservation as a protective mechanism against cardiac dysfunction during catabolic stress.

19.
J Neurosci ; 29(30): 9439-49, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19641107

RESUMEN

Thyroid hormone transport into cells requires plasma membrane transport proteins. Mutations in one of these, monocarboxylate transporter 8 (MCT8), have been identified as underlying cause for the Allan-Herndon-Dudley syndrome, an X-linked mental retardation in which the patients also present with abnormally high 3',3,5-triiodothyronine (T(3)) plasma levels. Mice deficient in Mct8 replicate the thyroid hormone abnormalities observed in the human condition. However, no neurological deficits have been described in mice lacking Mct8. Therefore, we subjected Mct8-deficient mice to a comprehensive immunohistochemical, neurological, and behavioral screen. Several behavioral abnormalities were found in the mutants. Interestingly, some of these behavioral changes are compatible with hypothyroidism, whereas others rather indicate hyperthyroidism. We thus hypothesized that neurons exclusively dependent on Mct8 are in a hypothyroid state, whereas neurons expressing other T(3) transporters become hyperthyroid, if they are exposed directly to the high plasma T(3). The majority of T(3) uptake in primary cortical neurons is mediated by Mct8, but pharmacological inhibition suggested functional expression of additional T(3) transporter classes. mRNAs encoding six T(3) transporters, including L-type amino acid transporters (LATs), were coexpressed with Mct8 in isolated neurons. We then demonstrated Lat2 expression in cultured neurons and throughout murine brain development. In contrast, LAT2 is expressed in microglia in the developing human brain during gestation, but not in neurons. We suggest that lack of functional complementation by alternative thyroid hormone transporters in developing human neurons precipitates the devastating neurodevelopmental phenotype in MCT8-deficient patients, whereas Mct8-deficient mouse neurons are functionally complemented by other transporters, for possibly Lat2.


Asunto(s)
Conducta Animal , Proteínas de Transporte de Membrana/deficiencia , Discapacidad Intelectual Ligada al Cromosoma X/genética , Neuronas/fisiología , Triyodotironina/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Células Cultivadas , Cadenas Ligeras de la Proteína-1 Reguladora de Fusión/metabolismo , Humanos , Hipertiroidismo/fisiopatología , Hipotiroidismo/fisiopatología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Noqueados , Microglía/metabolismo , Transportadores de Ácidos Monocarboxílicos , Pruebas Neuropsicológicas , Fenotipo , ARN Mensajero/metabolismo , Simportadores , Síndrome
20.
Rev Neurosci ; 21(3): 173-86, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20879691

RESUMEN

Thyroid hormones are essential for brain development. The active thyroid hormone, T3, binds to several products of two genes, the nuclear thyroid hormone receptors alpha and beta, and thus regulates gene expression. Mutations in a thyroid hormone transmembrane transport protein, monocarboxylate transporter 8 (MCT8), underlie one of the first described X-linked mental retardation syndromes, the Allan-Herndon-Dudley syndrome. This discovery sparked great interest in the process of thyroid hormone transmembrane transport. Iodothyronines are charged amino acid derivatives and require protein facilitators to cross cellular membranes. Thyroid hormones are translocated across lipid bilayers by several members of the major facilitator superfamily, including monocarboxylate transporters, amino acid transporters, and organic anion transporting polypeptides. Although until recently few researchers considered thyroid hormone transporters an important object of study, there is now a large number of candidate transporters to be reckoned with in the brain. Moreover, to finally cross the neuronal plasma membrane, any iodothyronine molecule on its way toward a neuronal nucleus has to cross consecutively the lumenal and ablumenal membranes of the capillary endothelium, enter astrocytic foot processes, and leave the astrocyte through the plasma membrane. Moreover, microglia, oligodendrocytes, and precursor and stem cells are thyroid hormone responsive and likely express thyroid hormone transporters. Hence, the many roles played by thyroid hormones in the development, function, and regeneration of the nervous system are dependent on the spatiotemporal expression of several transmembrane transport proteins.


Asunto(s)
Encéfalo/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Hormonas Tiroideas/metabolismo , Animales , Transporte Biológico/fisiología , Encéfalo/patología , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/genética , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Mutación/genética , Simportadores , Hormonas Tiroideas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA