RESUMEN
Perovskite solar cells (PSCs) are among the most promising photovoltaic technologies owing to their exceptional optoelectronic properties1,2. However, the lower efficiency, poor stability and reproducibility issues of large-area PSCs compared with laboratory-scale PSCs are notable drawbacks that hinder their commercialization3. Here we report a synergistic dopant-additive combination strategy using methylammonium chloride (MACl) as the dopant and a Lewis-basic ionic-liquid additive, 1,3-bis(cyanomethyl)imidazolium chloride ([Bcmim]Cl). This strategy effectively inhibits the degradation of the perovskite precursor solution (PPS), suppresses the aggregation of MACl and results in phase-homogeneous and stable perovskite films with high crystallinity and fewer defects. This approach enabled the fabrication of perovskite solar modules (PSMs) that achieved a certified efficiency of 23.30% and ultimately stabilized at 22.97% over a 27.22-cm2 aperture area, marking the highest certified PSM performance. Furthermore, the PSMs showed long-term operational stability, maintaining 94.66% of the initial efficiency after 1,000 h under continuous one-sun illumination at room temperature. The interaction between [Bcmim]Cl and MACl was extensively studied to unravel the mechanism leading to an enhancement of device properties. Our approach holds substantial promise for bridging the benchtop-to-rooftop gap and advancing the production and commercialization of large-area perovskite photovoltaics.
RESUMEN
The global transition from fossil fuels to green energy underpins the need for efficient and reliable energy storage systems. Advanced analysis and characterization of battery materials is not only important to understand fundamental battery properties but also crucial for their continued development. A deep understanding of these systems is often difficult to obtain through only pre- and/or post-mortem analyses, with the full complexity of a battery being hidden in its operational state. Thus, we have developed an operando methodology to analyze solid-state batteries (SSBs) structurally as well as chemically before, during, and after cycling. The approach is based on a specially designed sample holder, which enables a variety of electrochemical experiments. Since the entire workflow is performed within a single focused ion beam scanning electron microscope equipped with an in-house developed magnetic sector secondary ion mass spectrometer, we are able to pause the cycling at any time, perform analysis, and then continue cycling. Microstructural analysis is performed via secondary electron imaging, and the chemical mapping is performed using the secondary ion mass spectrometer. In this proof-of-concept study, we were able to identify dendrites in a short-circuited symmetric cell and to chemically map dendritic structures. While this methodology focuses on SSBs, the approach can directly be adapted to different battery systems and beyond. Our technique clearly has an advantage over many alternatives for battery analysis as no transfer of samples between instruments is needed and a correlation between the microstructure, chemical composition, and electrochemical performance is obtained directly.
RESUMEN
Scanning transmission ion microscopy imaging was performed whilst using a delay-line detector to record the impact position and arrival time of transmitted ions or neutrals. The incident helium ion beam had an energy of 20 keV and the arrival time measurements were used to calculate the energy loss after transmission through the sample. The 5D dataset thus produced (2D position in the sample plane, 2D position in the detector plane, and energy) is analyzed by collection into energy spectra or images. It is demonstrated that ion energy loss maps can identify regions of identical materials in the sample plane. The behavior of the energy loss with respect to the scattering angle is calculated and these simulations agree with the experimentally measured results. This experiment demonstrates the capability of keV helium ions to be successfully used in energy loss imaging experiments. This is the first step in the development of keV scanning transmission ion microscopy energy loss techniques.
RESUMEN
Detection of iron at the subcellular level in order to gain insights into its transport, storage, and therapeutic prospects to prevent cytotoxic effects of excessive iron accumulation is still a challenge. Nanoscale magnetic sector secondary ion mass spectrometry (SIMS) is an excellent candidate for subcellular mapping of elements in cells since it provides high secondary ion collection efficiency and transmission, coupled with high-lateral-resolution capabilities enabled by nanoscale primary ion beams. In this study, we developed correlative methodologies that implement SIMS high-resolution imaging technologies to study accumulation and determine subcellular localization of iron in alveolar macrophages. We employed transmission electron microscopy (TEM) and backscattered electron (BSE) microscopy to obtain structural information and high-resolution analytical tools, NanoSIMS and helium ion microscopy-SIMS (HIM-SIMS) to trace the chemical signature of iron. Chemical information from NanoSIMS was correlated with TEM data, while high-spatial-resolution ion maps from HIM-SIMS analysis were correlated with BSE structural information of the cell. NanoSIMS revealed that iron is accumulating within mitochondria, and both NanoSIMS and HIM-SIMS showed accumulation of iron in electrolucent compartments such as vacuoles, lysosomes, and lipid droplets. This study provides insights into iron metabolism at the subcellular level and has future potential in finding therapeutics to reduce the cytotoxic effects of excessive iron loading.
Asunto(s)
Hierro , Macrófagos Alveolares , Helio , Pulmón , Espectrometría de Masa de Ion Secundario/métodosRESUMEN
The structural, morphological, and chemical characterization of samples is of utmost importance for a large number of scientific fields. Furthermore, this characterization very often needs to be performed in three dimensions and at length scales down to the nanometer. Therefore, there is a stringent necessity to develop appropriate instrumentational solutions to fulfill these needs. Here we report on the deployment of magnetic sector secondary ion mass spectrometry (SIMS) on a type of instrument widely used for such nanoscale investigations, namely, focused ion beam (FIB)-scanning electron microscopy (SEM) instruments. First, we present the layout of the FIB-SEM-SIMS instrument and address its performance by using specific test samples. The achieved performance can be summarized as follows: an overall secondary ion beam transmission above 40%, a mass resolving power (M/ΔM) of more than 400, a detectable mass range from 1 to 400 amu, a lateral resolution in two-dimensional (2D) chemical imaging mode of 15 nm, and a depth resolution of â¼4 nm at 3.0 keV of beam landing energy. Second, we show results (depth profiling, 2D imaging, three-dimensional imaging) obtained in a wide range of areas, such as battery research, photovoltaics, multilayered samples, and life science applications. We hereby highlight the system's versatile capability of conducting high-performance correlative studies in the fields of materials science and life sciences.
Asunto(s)
Imagenología Tridimensional , Espectrometría de Masa de Ion Secundario , Imagenología Tridimensional/métodos , Fenómenos Magnéticos , Microscopía Electrónica de RastreoRESUMEN
Correlative microscopy approaches are attracting considerable interest in several research fields such as materials and battery research. Recent developments regarding X-ray computer tomography have made this technique available in a compact module for scanning electron microscopes (SEMs). Nano-computed tomography (nanoCT) allows morphological analysis of samples in a nondestructive way and to generate 2D and 3D overviews. However, morphological analysis alone is not sufficient for advanced studies, and to draw conclusions beyond morphology, chemical analysis is needed. While conventional SEM-based chemical analysis techniques such as energy-dispersive X-ray spectroscopy (EDS) are adequate in many cases, they are not well suited for the analysis of trace elements and low-Z elements such as hydrogen or lithium. Furthermore, the large information depth in typical SEM-EDS imaging conditions limits the lateral resolution to micrometer length scales. In contrast, secondary ion mass spectrometry (SIMS) can perform elemental mapping with good surface sensitivity, nanoscale lateral resolution, and the possibility to analyze even low-Z elements and isotopes. In this study, we demonstrate the feasibility and compatibility of a novel FIB-SEM-based correlative nanoCT-SIMS imaging approach to correlate morphological and chemical data of the exact same sample volume, using a cathode material of a commercial lithium battery as an example.
RESUMEN
This paper is a review on the combination between Helium Ion Microscopy (HIM) and Secondary Ion Mass Spectrometry (SIMS), which is a recently developed technique that is of particular relevance in the context of the quest for high-resolution high-sensitivity nano-analytical solutions. We start by giving an overview on the HIM-SIMS concept and the underlying fundamental principles of both HIM and SIMS. We then present and discuss instrumental aspects of the HIM and SIMS techniques, highlighting the advantage of the integrated HIM-SIMS instrument. We give an overview on the performance characteristics of the HIM-SIMS technique, which is capable of producing elemental SIMS maps with lateral resolution below 20 nm, approaching the physical resolution limits, while maintaining a sub-nanometric resolution in the secondary electron microscopy mode. In addition, we showcase different strategies and methods allowing to take profit of both capabilities of the HIM-SIMS instrument (high-resolution imaging using secondary electrons and mass filtered secondary sons) in a correlative approach. Since its development HIM-SIMS has been successfully applied to a large variety of scientific and technological topics. Here, we will present and summarise recent applications of nanoscale imaging in materials research, life sciences and geology.
Asunto(s)
Helio , Espectrometría de Masa de Ion Secundario , Pruebas Diagnósticas de Rutina , Microscopía ElectrónicaRESUMEN
Over the last few decades, nanoparticles have become a key element in a number of scientific and technological fields, spanning from materials science to life sciences. The characterization of nanoparticles or samples containing nanoparticles, in terms of morphology, chemical composition, and other parameters, typically involves investigations with various analytical tools, requiring complex workflows and extending the duration of such studies to several days or even weeks. Here, we report on the development of a new unique in situ correlative instrument, allowing us to answer questions about the shape, size, size distribution, and chemical composition of the nanoparticles using a single probe. Combining various microscopic and analytical capabilities in one single instrument allows a considerable increase in flexibility and a reduction in the duration of such complex investigations. The new instrument is based on focused ion beam microscopy technology using a gas field ion source as a key enabler and combining it with specifically developed secondary ion mass spectrometry and scanning transmission ion microscopy technology. We will present the underlying concept, the instrument and its main components, and proof-of-concept studies performed on this novel instrument. For this purpose, different pure titanium dioxide nanoparticle samples were investigated. Furthermore, the distribution and localization of the nanoparticles in biological model systems were studied. Our results demonstrate the performance and usefulness of the instrument for nanoparticle investigations, paving the way for a number of future applications, in particular, nanotoxicological research.
Asunto(s)
Nanopartículas , Microscopía , Espectrometría de Masa de Ion SecundarioRESUMEN
The development of high-resolution microscopy and spectroscopy techniques has allowed the analysis of microscopic 3D objects in fields like nanotechnology and life and soil sciences. Soils have the ability to incorporate and store large amounts of organic carbon. To study this organic matter (OM) sequestration, it is essential to analyze its association with soil minerals at the relevant microaggregate scale. This has been previously studied in 2D. However, 3D surface representations would allow a variable angle and magnification analysis, providing detailed insight on their architecture. Here we illustrate a 4D surface reconstruction workflow able to locate preferential sites for OM deposition with respect to microaggregate topography. We used Helium Ion Microscopy to acquire overlapping Secondary Electron (SE) images to reconstruct the soil topography in 3D. Then we used nanoscale Secondary Ion Mass Spectrometry imaging to chemically differentiate between the OM and mineral constituents forming the microaggregates. This image was projected onto the 3D SE model to create a 4D surface reconstruction. Our results show that organo-mineral associations mainly form at medium curvatures while flat and highly curved surfaces are avoided. This method presents an important step forward to survey the 3D physical structure and chemical composition of microscale biogeochemical systems correlatively.
Asunto(s)
Minerales , Suelo , Carbono , Análisis EspectralRESUMEN
ZnO nanobelts may grow with their polar axis perpendicular to growth direction. Heterostructured nanobelts therefore contain hetero-interfaces along the polar axis of ZnO where polarisation mismatch may induce electron confinement. These interfaces run along the length of the nanobelts. Such heterostructure nanobelts are grown by molecular beam epitaxy and TEM images confirm the core-shell structure. The effects of shell-growth temperature on nano-heterostructures is investigated using photoluminescence and secondary ion mass spectrometry in a focussed ion-beam microscope with Ne+ as the primary ion beam. We perform low temperature photoluminescence on ensembles of such heterostructures and single nanostructures. We show how single nanobelts have photoluminescence spectra rich in features and attribute these to band misalignment at ZnO/ZnMgO interfaces embedded within nano-heterostructures.
RESUMEN
BACKGROUND: The present study aimed to evaluate the potential differences in the biological effects of two types of spherical silver particles of 20 and 200 nm (Ag20 and Ag200), and of PVP-coated silver nanowires (AgNWs) with a diameter of 50 nm and length up to 50 µm, using a complex 3D model representative for the alveolar barrier cultured at air-liquid interface (ALI). The alveolar model was exposed to 0.05, 0.5 and 5 µg/cm2 of test compounds at ALI using a state-of-the-art exposure system (Vitrocell™Cloud System). Endpoints related to the oxidative stress induction, anti-oxidant defence mechanisms, pro-inflammatory responses and cellular death were selected to evaluate the biocompatibility of silver particles and nanowires (AgNMs) and to further ascribe particular biological effects to the different morphologic properties between the three types of AgNMs evaluated. RESULTS: Significant cytotoxic effect was observed for all three types of AgNMs at the highest tested doses. The increased mRNA levels of the pro-apoptotic gene CASP7 suggests that apoptosis may occur after exposure to AgNWs. All three types of AgNMs increased the mRNA level of the anti-oxidant enzyme HMOX-1 and of the metal-binding anti-oxidant metallothioneins (MTs), with AgNWs being the most potent inducer. Even though all types of AgNMs induced the nuclear translocation of NF-kB, only AgNWs increased the mRNA level of pro-inflammatory mediators. The pro-inflammatory response elicited by AgNWs was further confirmed by the increased secretion of the 10 evaluated interleukins. CONCLUSION: In the current study, we demonstrated that the direct exposure of a complex tetra-culture alveolar model to different types of AgNMs at ALI induces shape- and size-specific biological responses. From the three AgNMs tested, AgNWs were the most potent in inducing biological alterations. Starting from 50 ng/cm2, a dose representative for an acute exposure in a high exposure occupational setting, AgNWs induced prominent changes indicative for a pro-inflammatory response. Even though the acute responses towards a dose representative for a full-lifetime exposure were also evaluated, chronic exposure scenarios at low dose are still unquestionably needed to reveal the human health impact of AgNMs during realistic conditions.
Asunto(s)
Barrera Alveolocapilar/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Modelos Biológicos , Nanocables/toxicidad , Alveolos Pulmonares/efectos de los fármacos , Plata/toxicidad , Contaminantes Atmosféricos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Citocinas/genética , Relación Dosis-Respuesta a Droga , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Tamaño de la Partícula , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/metabolismoRESUMEN
The chemical or elemental analysis of samples with complex surface topography is challenging for secondary ion mass spectrometry (SIMS), if the three-dimensional structure of the sample is not taken into account. Conventional 3D reconstruction of SIMS data assumes a flat surface and uniform sputtering conditions, which is not the case for many analytical applications involving micro- and nanosized particles, composites, or patterned materials. Reliable analysis of such samples requires knowledge of the actual 3D surface structure to correctly reconstruct the SIMS 3D maps. To this end, we introduce the use of photogrammetric 3D topography reconstruction from scanning helium ion microscopy (HIM) correlated with in situ SIMS data for the reconstruction of 3D SIMS data. The HIM and SIMS data are acquired under in situ conditions in a Zeiss ORION NanoFab HIM using a novel SIMS analyzer. We successfully tested the applicability of the approach to generate 3D models of different samples and show that the combination of SIMS and 3D topography is able to provide insights into the influence of the sample topography in a single instrument and with a single ion column and hence without the need for ex-situ sample analysis or additional instrumentation. These findings offer a path toward ion-based correlative 3D spectromicroscopy (3D-HIM-SIMS) and suggest that many combinations of charged particle based P3D (SEM, HIM) and analytical microscopy techniques, such as SIMS, energy-dispersive X-ray spectroscopy (EDX), or ionoluminescence/cathodoluminescence (IL/CL), can be used for correlative microscopy in 3D.
RESUMEN
Correlative microscopy combining various imaging modalities offers powerful insights into obtaining a comprehensive understanding of physical, chemical, and biological phenomena. In this article, we investigate two approaches for image fusion in the context of combining the inherently lower-resolution chemical images obtained using secondary ion mass spectrometry (SIMS) with the high-resolution ultrastructural images obtained using electron microscopy (EM). We evaluate the image fusion methods with three different case studies selected to broadly represent the typical samples in life science research: (i) histology (unlabeled tissue), (ii) nanotoxicology, and (iii) metabolism (isotopically labeled tissue). We show that the intensity-hue-saturation fusion method often applied for EM-sharpening can result in serious image artifacts, especially in cases where different contrast mechanisms interplay. Here, we introduce and demonstrate Laplacian pyramid fusion as a powerful and more robust alternative method for image fusion. Both physical and technical aspects of correlative image overlay and image fusion specific to SIMS-based correlative microscopy are discussed in detail alongside the advantages, limitations, and the potential artifacts. Quantitative metrics to evaluate the results of image fusion are also discussed.
RESUMEN
Compositional engineering of a mixed cation/mixed halide perovskite in the form of (FAPbI3)0.85(MAPbBr3)0.15 is one of the most effective strategies to obtain record-efficiency perovskite solar cells. However, the perovskite self-organization upon crystallization and the final elemental distribution, which are paramount for device optimization, are still poorly understood. Here we map the nanoscale charge carrier and elemental distribution of mixed perovskite films yielding 20% efficient devices. Combining a novel in-house-developed high-resolution helium ion microscope coupled with a secondary ion mass spectrometer (HIM-SIMS) with Kelvin probe force microscopy (KPFM), we demonstrate that part of the mixed perovskite film intrinsically segregates into iodide-rich perovskite nanodomains on a length scale of up to a few hundred nanometers. Thus, the homogeneity of the film is disrupted, leading to a variation in the optical properties at the micrometer scale. Our results provide unprecedented understanding of the nanoscale perovskite composition.
RESUMEN
Neuromelanin (NM) is a compound which highly accumulates mainly in catecholamine neurons of the substantia nigra (SN), and is contained in organelles (NM-containing organelles) with lipid bodies and proteins. These neurons selectively degenerate in Parkinson's disease and NM can play either a protective or toxic role. NM-containing organelles of SN were investigated by Analytical Electron Microscopy (AEM) and Nano-Secondary Ion Mass Spectrometry (NanoSIMS) within human tissue sections with respect to ultrastructure and elemental composition. Within the NM-containing organelle, the single NM granules and lipid bodies had sizes of about 200-600 nm. Energy-Dispersive X-ray microanalysis spectra of the NM granules and lipid bodies were acquired with 100 nm beam diameter in AEM, NanoSIMS yielded elemental maps with a lateral resolution of about 150 nm. AEM yielded the quantitative elemental composition of NM granules and bound metals, e.g., iron with a mole fraction of about 0.15 atomic percent. Chemical analyses by AEM and NanoSIMS were consistent at the subcellular level so that nanoSIMS measurements have been quantitated. In NM granules of SN from healthy subjects, a significant amount of S, Fe, and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved detection limits of nanoSIMS offer new possibilities for chemical mapping, high-sensitivity trace element detection, and reduced acquisition times. Variations between individual NM granules can now be investigated effectively and quantitatively by NanoSIMS mapping Cu and Fe. This should yield new insight into the changes in chemical composition of NM pigments during healthy aging and disease. Neuromelanin-containing organelles of dopamine neurons in normal human substantia nigra were investigated by analytical electron mircoscopy and secondary ion mass spectroscopy (NanoSIMS) yielding the ultrastructure and elemental composition. In neuromelanin granules a significant amount of S, Fe and Cu was found. In lipid bodies an amount of P consistent with the presence of phospholipids was measured. The improved sensitivity of NanoSIMS shows differences in chemical composition between individual neuromelanin granules and allows to study chemical changes of neuromelanin organelles during aging and disease.
Asunto(s)
Melaninas/metabolismo , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Anciano , Anciano de 80 o más Años , Gránulos Citoplasmáticos/metabolismo , Microanálisis por Sonda Electrónica/métodos , Femenino , Humanos , Masculino , Microscopía Electrónica de Transmisión/métodos , Enfermedad de Parkinson/patología , Espectrometría de Masa de Ion Secundario/métodos , Sustancia Negra/ultraestructuraRESUMEN
In secondary ion mass spectrometry (SIMS), the beneficial effect of cesium implantation or flooding on the enhancement of negative secondary ion yields has been investigated in detail for various semiconductor and metal samples. All results have been obtained for monatomic ion bombardment. Recent progress in SIMS is based to a large extent on the development and use of cluster primary ions. In this work we show that the enhancement of negative secondary ions induced by the combination of ion bombardment with simultaneous cesium flooding is valid not only for monatomic ion bombardment but also for cluster primary ions. Experiments carried out using C60+ and Ar4000+ bombardment on silicon show that yields of negative secondary silicon ions can be optimized in the same way as by Ga+ and Cs+ bombardment. Both for monatomic and cluster ion bombardment, the optimization does not depend on the primary ion species. Hence, it can be assumed that the silicon results are also valid for other cluster primary ions and that results obtained for monatomic ion bombardment on other semiconductor and metal samples are also valid for cluster ion bombardment. In SIMS, cluster primary ions are also largely used for the analysis of organic matter. For polycarbonate, our results show that Ar4000+ bombardment combined with cesium flooding enhances secondary ion signals by a factor of 6. This can be attributed to the removal of charging effects and/or reduced fragmentation, but no major influence on ionization processes can be observed. The use of cesium flooding for the imaging of cells was also investigated and a significant enhancement of secondary ion yields was observed. Hence, cesium flooding has also a vast potential for SIMS analyses with cluster ion bombardment.
RESUMEN
Advanced characterization is paramount to understanding battery cycling and degradation in greater detail. Herein, we present a novel methodology of battery electrode analysis, employing focused ion beam (FIB) secondary-ion mass spectrometry platforms coupled with a specific lift-out specimen preparation, allowing us to optimize analysis and prevent air contamination. Correlative microscopy, combining electron microscopy and chemical imaging of a liquid electrolyte Li-ion battery electrode, is performed over the entire electrode thickness down to subparticle domains. We observed a distinctive remnant lithiation among interparticles of the anode at the discharge state. Furthermore, chemical mapping reveals the nanometric architecture of advanced composite active materials with a lateral resolution of 16 nm and the presence of a solid electrolyte interface on the particle boundaries. We highlight the methodological advantages of studying interfaces and the ability to conduct high-performance chemical and morphological correlative analyses of battery materials and comment on their potential use in other fields.