Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 43(18): 4068-4091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122924

RESUMEN

How the timing of development is linked to organismal size is a longstanding question. Although numerous studies have reported a correlation of temporal and spatial traits, the developmental or selective constraints underlying this link remain largely unexplored. We address this question by studying the periodic process of embryonic axis segmentation in-vivo in Oryzias fish. Interspecies comparisons reveal that the timing of segmentation correlates to segment, tissue and organismal size. Segment size in turn scales according to tissue and organism size. To probe for underlying causes, we genetically hybridised two closely related species. Quantitative analysis in ~600 phenotypically diverse F2 embryos reveals a decoupling of timing from size control, while spatial scaling is preserved. Using developmental quantitative trait loci (devQTL) mapping we identify distinct genetic loci linked to either the control of segmentation timing or tissue size. This study demonstrates that a developmental constraint mechanism underlies spatial scaling of axis segmentation, while its spatial and temporal control are dissociable modules.


Asunto(s)
Oryzias , Sitios de Carácter Cuantitativo , Animales , Oryzias/genética , Oryzias/embriología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Tamaño Corporal
2.
Development ; 150(2)2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36683434

RESUMEN

Base editing by CRISPR crucially depends on the presence of a protospacer adjacent motif (PAM) at the correct distance from the editing site. Here, we present and validate an efficient one-shot approach termed 'inception' that expands the editing range. This is achieved by sequential, combinatorial base editing: de novo generated synonymous, non-synonymous or intronic PAM sites facilitate subsequent base editing at nucleotide positions that were initially inaccessible, further opening the targeting range of highly precise editing approaches. We demonstrate the applicability of the inception concept in medaka (Oryzias latipes) in three settings: loss of function, by introducing a pre-termination STOP codon in the open reading frame of oca2; locally confined multi-codon changes to generate allelic variants with different phenotypic severity in kcnh6a; and the removal of a splice acceptor site by targeting intronic sequences of rx3. Using sequentially acting base editors in the described combinatorial approach expands the number of accessible target sites by 65% on average. This allows the use of well-established tools with NGG PAM recognition for the establishment of thus far unreachable disease models, for hypomorphic allele studies and for efficient targeted mechanistic investigations in a precise and predictable manner.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Oryzias/genética
3.
Nature ; 584(7822): 589-594, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814899

RESUMEN

The inner surfaces of the human heart are covered by a complex network of muscular strands that is thought to be a remnant of embryonic development1,2. The function of these trabeculae in adults and their genetic architecture are unknown. Here we performed a genome-wide association study to investigate image-derived phenotypes of trabeculae using the fractal analysis of trabecular morphology in 18,096 participants of the UK Biobank. We identified 16 significant loci that contain genes associated with haemodynamic phenotypes and regulation of cytoskeletal arborization3,4. Using biomechanical simulations and observational data from human participants, we demonstrate that trabecular morphology is an important determinant of cardiac performance. Through genetic association studies with cardiac disease phenotypes and Mendelian randomization, we find a causal relationship between trabecular morphology and risk of cardiovascular disease. These findings suggest a previously unknown role for myocardial trabeculae in the function of the adult heart, identify conserved pathways that regulate structural complexity and reveal the influence of the myocardial trabeculae on susceptibility to cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Fractales , Predisposición Genética a la Enfermedad , Corazón/anatomía & histología , Corazón/fisiología , Miocardio/metabolismo , Adulto , Anciano , Animales , Enfermedades Cardiovasculares/fisiopatología , Citoesqueleto/genética , Citoesqueleto/fisiología , Técnicas de Inactivación de Genes , Sitios Genéticos/genética , Estudio de Asociación del Genoma Completo , Corazón/embriología , Hemodinámica , Humanos , Persona de Mediana Edad , Miocardio/citología , Oryzias/embriología , Oryzias/genética , Fenotipo
4.
Nucleic Acids Res ; 51(3): e14, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36533445

RESUMEN

CRISPR/Cas-based approaches have largely replaced conventional gene targeting strategies. However, homology-directed repair (HDR) in the mouse genome is not very efficient, and precisely inserting longer sequences using HDR remains challenging given that donor constructs preferentially integrate as concatemers. Here, we showed that injecting 5' biotinylated donor DNA into mouse embryos at the two-cell stage led to efficient single-copy HDR (scHDR) allele generation. Our dedicated genotyping strategy showed that these alleles occurred with frequencies of 19%, 20%, and 26% at three independent gene loci, indicating that scHDR was dramatically increased by 5' biotinylation. Thus, we suggest that the combination of a 5' biotinylated donor and diligent analysis of concatemer integration are prerequisites for efficiently and reliably generating conditional alleles or other large fragment knock-ins in the mouse genome.


Asunto(s)
Embrión de Mamíferos , Edición Génica , Animales , Ratones , Sistemas CRISPR-Cas , ADN , Reparación del ADN por Unión de Extremidades , Edición Génica/métodos , Marcación de Gen , Reparación del ADN por Recombinación
5.
Development ; 148(7)2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33722901

RESUMEN

How the body and organs balance their relative growth is of key importance for coordinating size and function. This is of particular relevance in organisms, which continue to grow over their entire life span. We addressed this issue in the neuroretina of medaka fish (Oryzias latipes), a well-studied system with which to address vertebrate organ growth. We reveal that a central growth regulator, Igf1 receptor (Igf1r), is necessary and sufficient for proliferation control in the postembryonic retinal stem cell niche: the ciliary marginal zone (CMZ). Targeted activation of Igf1r signaling in the CMZ uncouples neuroretina growth from body size control, and we demonstrate that Igf1r operates on progenitor cells, stimulating their proliferation. Activation of Igf1r signaling increases retinal size while preserving its structural integrity, revealing a modular organization in which progenitor differentiation and neurogenesis are self-organized and highly regulated. Our findings position Igf signaling as a key module for controlling retinal size and composition, with important evolutionary implications.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina/metabolismo , Oryzias/crecimiento & desarrollo , Receptor IGF Tipo 1/metabolismo , Retina/crecimiento & desarrollo , Transducción de Señal , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Ciclo Celular , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular , Autorrenovación de las Células , Factor I del Crecimiento Similar a la Insulina/genética , Neurogénesis , Oryzias/embriología , Oryzias/genética , Receptor IGF Tipo 1/genética , Retina/citología , Nicho de Células Madre , Células Madre/citología , Vertebrados
6.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106226

RESUMEN

Defects in the evolutionarily conserved protein-glycosylation machinery during embryonic development are often fatal. Consequently, congenital disorders of glycosylation (CDG) in human are rare. We modelled a putative hypomorphic mutation described in an alpha-1,3/1,6-mannosyltransferase (ALG2) index patient (ALG2-CDG) to address the developmental consequences in the teleost medaka (Oryzias latipes). We observed specific, multisystemic, late-onset phenotypes, closely resembling the patient's syndrome, prominently in the facial skeleton and in neuronal tissue. Molecularly, we detected reduced levels of N-glycans in medaka and in the patient's fibroblasts. This hypo-N-glycosylation prominently affected protein abundance. Proteins of the basic glycosylation and glycoprotein-processing machinery were over-represented in a compensatory response, highlighting the regulatory topology of the network. Proteins of the retinal phototransduction machinery, conversely, were massively under-represented in the alg2 model. These deficiencies relate to a specific failure to maintain rod photoreceptors, resulting in retinitis pigmentosa characterized by the progressive loss of these photoreceptors. Our work has explored only the tip of the iceberg of N-glycosylation-sensitive proteins, the function of which specifically impacts on cells, tissues and organs. Taking advantage of the well-described human mutation has allowed the complex interplay of N-glycosylated proteins and their contribution to development and disease to be addressed.


Asunto(s)
Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Oryzias/genética , Oryzias/metabolismo , Animales , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicosilación , Humanos , Mutación , Fenotipo , Polisacáridos , Retinitis Pigmentosa
7.
Nat Methods ; 18(5): 557-563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33963344

RESUMEN

Visualizing dynamic processes over large, three-dimensional fields of view at high speed is essential for many applications in the life sciences. Light-field microscopy (LFM) has emerged as a tool for fast volumetric image acquisition, but its effective throughput and widespread use in biology has been hampered by a computationally demanding and artifact-prone image reconstruction process. Here, we present a framework for artificial intelligence-enhanced microscopy, integrating a hybrid light-field light-sheet microscope and deep learning-based volume reconstruction. In our approach, concomitantly acquired, high-resolution two-dimensional light-sheet images continuously serve as training data and validation for the convolutional neural network reconstructing the raw LFM data during extended volumetric time-lapse imaging experiments. Our network delivers high-quality three-dimensional reconstructions at video-rate throughput, which can be further refined based on the high-resolution light-sheet images. We demonstrate the capabilities of our approach by imaging medaka heart dynamics and zebrafish neural activity with volumetric imaging rates up to 100 Hz.


Asunto(s)
Aprendizaje Profundo , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Animales , Fenómenos Biomecánicos , Calcio/química , Larva/fisiología , Oryzias/fisiología , Reproducibilidad de los Resultados , Pez Cebra/fisiología
8.
Eur J Immunol ; 52(2): 261-269, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731490

RESUMEN

The differentiation of T cells from lymphoid progenitors in the thymus follows sequential developmental stages that constantly require interaction with thymic epithelial cells. Several distinct aspects of early T cell development depend on the activation of Notch receptors on thymocytes, while the selection of thymocytes at later stages are believed to be Notch independent. Using reverse genetic approaches and whole-thymus live imaging in an in vivo teleost model, the medaka, we report that Notch1 signals is required for proliferation and specification of developing T cells as well as involved in their selection in the thymus. We reveal that Notch1 controls the migratory behavior of thymocytes through controlling the chemokine receptor Ccr9b and thereby influence the T cell receptor (TCR) activation. Hence, we propose that, in lower vertebrates, the function of Notch signaling extends to all stages of T cell development, except when thymocytes undergo TCRß rearrangement.


Asunto(s)
Movimiento Celular , Proteínas de Peces/inmunología , Oryzias , Receptor Notch1/deficiencia , Transducción de Señal , Linfocitos T/inmunología , Timo/inmunología , Animales , Movimiento Celular/genética , Movimiento Celular/inmunología , Proteínas de Peces/deficiencia , Oryzias/genética , Oryzias/inmunología , Receptor Notch1/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología
9.
Mol Cell Proteomics ; 20: 100092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33975020

RESUMEN

C-mannosylation is a modification of tryptophan residues with a single mannose and can affect protein folding, secretion, and/or function. To date, only a few proteins have been demonstrated to be C-mannosylated, and studies that globally assess protein C-mannosylation are scarce. To interrogate the C-mannosylome of human induced pluripotent stem cells, we compared the secretomes of CRISPR-Cas9 mutants lacking either the C-mannosyltransferase DPY19L1 or DPY19L3 to WT human induced pluripotent stem cells using MS-based quantitative proteomics. The secretion of numerous proteins was reduced in these mutants, including that of A Disintegrin And Metalloproteinase with ThromboSpondin Motifs 16 (ADAMTS16), an extracellular protease that was previously reported to be essential for optic fissure fusion in zebrafish eye development. To test the functional relevance of this observation, we targeted dpy19l1 or dpy19l3 in embryos of the Japanese rice fish medaka (Oryzias latipes) by CRISPR-Cas9. We observed that targeting of dpy19l3 partially caused defects in optic fissure fusion, called coloboma. We further showed in a cellular model that DPY19L1 and DPY19L3 mediate C-mannosylation of a recombinantly expressed thrombospondin type 1 repeat of ADAMTS16 and thereby support its secretion. Taken together, our findings imply that DPY19L3-mediated C-mannosylation is involved in eye development by assisting secretion of the extracellular protease ADAMTS16.


Asunto(s)
Proteínas ADAMTS/metabolismo , Ojo/crecimiento & desarrollo , Manosiltransferasas/metabolismo , Animales , Línea Celular , Cricetulus , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Manosa , Manosiltransferasas/genética , Oryzias
10.
Development ; 146(13)2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31142542

RESUMEN

Yap1/Taz are well-known Hippo effectors triggering complex transcriptional programs controlling growth, survival and cancer progression. Here, we describe yap1b, a new Yap1/Taz family member with a unique transcriptional activation domain that cannot be phosphorylated by Src/Yes kinases. We show that yap1b evolved specifically in euteleosts (i.e. including medaka but not zebrafish) by duplication and adaptation of yap1. Using DamID-seq, we generated maps of chromatin occupancy for Yap1, Taz (Wwtr1) and Yap1b in gastrulating zebrafish and medaka embryos. Our comparative analyses uncover the genetic programs controlled by Yap family proteins during early embryogenesis, and show largely overlapping targets for Yap1 and Yap1b. CRISPR/Cas9-induced mutation of yap1b in medaka does not result in an overt phenotype during embryogenesis or adulthood. However, yap1b mutation strongly enhances the embryonic malformations observed in yap1 mutants. Thus yap1-/-; yap1b-/- double mutants display more severe body flattening, eye misshaping and increased apoptosis than yap1-/- single mutants, thus revealing overlapping gene functions. Our results indicate that, despite its divergent transactivation domain, Yap1b cooperates with Yap1 to regulate cell survival and tissue morphogenesis during early development.


Asunto(s)
Pérdida del Embrión/genética , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Transactivadores/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Pérdida del Embrión/veterinaria , Embrión no Mamífero , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , Mutación , Oryzias/embriología , Oryzias/genética , Dominios Proteicos/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Transactivadores/química , Transactivadores/genética , Factores de Transcripción/química , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
11.
Nat Methods ; 16(6): 497-500, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31036959

RESUMEN

To capture highly dynamic biological processes at cellular resolution is a recurring challenge in biology. Here we show that combining selective-volume illumination with simultaneous acquisition of orthogonal light fields yields three-dimensional images with high, isotropic spatial resolution and a significant reduction of reconstruction artefacts, thereby overcoming current limitations of light-field microscopy implementations. We demonstrate medaka heart and blood flow imaging at single-cell resolution and free of motion artefacts at volume rates of up to 200 Hz.


Asunto(s)
Corazón/diagnóstico por imagen , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Análisis de la Célula Individual/métodos , Algoritmos , Animales , Animales Modificados Genéticamente , Artefactos , Velocidad del Flujo Sanguíneo , Humanos , Imagenología Tridimensional/métodos , Oryzias
12.
Development ; 145(21)2018 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-30337377

RESUMEN

Patterning of a continuously growing naive field in the context of a life-long growing organ such as the teleost eye is of high functional relevance. Intrinsic and extrinsic signals have been proposed to regulate lineage specification in progenitors that exit the stem cell niche in the ciliary marginal zone (CMZ). The proper cell-type composition arising from those progenitors is a prerequisite for retinal function. Our findings in the teleost medaka (Oryzias latipes) uncover that the Notch-Atoh7 axis continuously patterns the CMZ. The complement of cell types originating from the two juxtaposed progenitors marked by Notch or Atoh7 activity contains all constituents of a retinal column. Modulation of Notch signalling specifically in Atoh7-expressing cells demonstrates the crucial role of this axis in generating the correct cell-type proportions. After transiently blocking Notch signalling, retinal patterning and differentiation is re-initiated de novo Taken together, our data show that Notch activity in the CMZ continuously structures the growing retina by juxtaposing Notch and Atoh7 progenitors that give rise to distinct complementary lineages, revealing coupling of de novo patterning and cell-type specification in the respective lineages.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Oryzias/crecimiento & desarrollo , Oryzias/metabolismo , Receptores Notch/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Células Amacrinas/citología , Células Amacrinas/metabolismo , Animales , Recuento de Células , Linaje de la Célula , Embrión no Mamífero/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/metabolismo , Modelos Biológicos , Retina/citología , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo , Células Madre/metabolismo
13.
Proc Natl Acad Sci U S A ; 115(42): E9812-E9821, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30282743

RESUMEN

The ability of cells to collectively interpret surrounding environmental signals underpins their capacity to coordinate their migration in various contexts, including embryonic development and cancer metastasis. One tractable model for studying collective migration is the parapineal, a left-sided group of neurons that arises from bilaterally positioned precursors that undergo a collective migration to the left side of the brain. In zebrafish, the migration of these cells requires Fgf8 and, in this study, we resolve how FGF signaling correlates with-and impacts the migratory dynamics of-the parapineal cell collective. The temporal and spatial dynamics of an FGF reporter transgene reveal that FGF signaling is activated in only few parapineal cells usually located at the leading edge of the parapineal during its migration. Overexpressing a constitutively active Fgf receptor compromises parapineal migration in wild-type embryos, while it partially restores both parapineal migration and mosaic expression of the FGF reporter transgene in fgf8-/- mutant embryos. Focal activation of FGF signaling in few parapineal cells is sufficient to promote the migration of the whole parapineal collective. Finally, we show that asymmetric Nodal signaling contributes to the restriction and leftwards bias of FGF pathway activation. Our data indicate that the first overt morphological asymmetry in the zebrafish brain is promoted by FGF pathway activation in cells that lead the collective migration of the parapineal to the left. This study shows that cell-state differences in FGF signaling in front versus rear cells is required to promote migration in a model of FGF-dependent collective migration.


Asunto(s)
Tipificación del Cuerpo , Movimiento Celular , Embrión no Mamífero/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Lateralidad Funcional , Glándula Pineal/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente/fisiología , Embrión no Mamífero/citología , Factores de Crecimiento de Fibroblastos/genética , Regulación del Desarrollo de la Expresión Génica , Glándula Pineal/citología , Transducción de Señal , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
14.
Genes Dev ; 27(16): 1769-86, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23964093

RESUMEN

The majority of neural stem cells (NSCs) in the adult brain are quiescent, and this fraction increases with aging. Although signaling pathways that promote NSC quiescence have been identified, the transcriptional mechanisms involved are mostly unknown, largely due to lack of a cell culture model. In this study, we first demonstrate that NSC cultures (NS cells) exposed to BMP4 acquire cellular and transcriptional characteristics of quiescent cells. We then use epigenomic profiling to identify enhancers associated with the quiescent NS cell state. Motif enrichment analysis of these enhancers predicts a major role for the nuclear factor one (NFI) family in the gene regulatory network controlling NS cell quiescence. Interestingly, we found that the family member NFIX is robustly induced when NS cells enter quiescence. Using genome-wide location analysis and overexpression and silencing experiments, we demonstrate that NFIX has a major role in the induction of quiescence in cultured NSCs. Transcript profiling of NS cells overexpressing or silenced for Nfix and the phenotypic analysis of the hippocampus of Nfix mutant mice suggest that NFIX controls the quiescent state by regulating the interactions of NSCs with their microenvironment.


Asunto(s)
Epigénesis Genética , Factores de Transcripción NFI/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Animales , Proteína Morfogenética Ósea 4/farmacología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Elementos de Facilitación Genéticos , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Factores de Transcripción NFI/genética , Células-Madre Neurales/efectos de los fármacos , Unión Proteica
15.
Dev Biol ; 455(1): 85-99, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31325454

RESUMEN

The caudal fin of teleost fish regenerates fully within two weeks of amputation. While various cell lineages have been identified and characterized in the regenerating fin, the origin of bone cells remains debated. Here, we analysed collagen10a1 (col10a1) expressing cells in the regenerating fin of the medaka (Oryzias latipes) and tested whether they represent an alternative progenitor source for regenerating osteoblasts. Under normal conditions, col10a1 cells are positioned along fin ray segments and in intersegmental regions. Lineage tracing in the amputated fin revealed that col10a1 cells from the stump contribute to the regenerating bony fin rays. However, ablation of col10a1 cells did not abolish fin regeneration suggesting that col10a1 expressing osteoblast progenitors are dispensable for regeneration. Intriguingly, however, after ablation of osterix (osx)/sp7-col10a1 double-positive osteoblasts, col10a1 cells exclusively gave rise to joint cells in the intersegmental region thus identifying a pool of lineage-restricted joint progenitor cells. To identify additional sources for regenerating osteoblasts, we performed clonal lineage analysis. Our data provide the first evidence that after ablation of mature osteoblasts in medaka, transdifferentiation does not account for de novo osteoblast generation. Instead, our findings suggest the presence of lineage restricted progenitor pools in medaka, similar to the situation in zebrafish. After osteoblast ablation, these pools become activated and give rise to fin ray osteoblasts and intersegmental joint cells during regeneration. In summary, we conclude that col10a1-positive cells do not represent an exclusive source for osteoblasts but are progenitors of joint cells in the regenerating fin.


Asunto(s)
Colágeno Tipo X/genética , Proteínas de Peces/genética , Articulaciones/metabolismo , Oryzias/genética , Osteoblastos/metabolismo , Células Madre/metabolismo , Aletas de Animales/metabolismo , Aletas de Animales/fisiopatología , Aletas de Animales/cirugía , Animales , Animales Modificados Genéticamente , Linaje de la Célula/genética , Colágeno Tipo X/metabolismo , Proteínas de Peces/metabolismo , Regulación del Desarrollo de la Expresión Génica , Articulaciones/citología , Oryzias/metabolismo , Oryzias/fisiología , Osteoblastos/citología , Regeneración/genética , Regeneración/fisiología , Células Madre/citología
16.
Dev Biol ; 445(1): 80-89, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392839

RESUMEN

Germline sex determination is an essential process for the production of sexually dimorphic gametes. In medaka, Forkhead box L3 (foxl3) was previously identified as a germ cell-intrinsic regulator of sex determination that suppresses the initiation of spermatogenesis in female germ cells. To reveal the molecular mechanism of germline sex determination by foxl3, we conducted the following four analyses: Comparison of transcriptomes between wild-type and foxl3-mutant germ cells; epistatic analysis; identification of the FOXL3-binding motif; and ChIP-qPCR assay using a FOXL3-monoclonal antibody. We identified two candidate genes acting downstream of foxl3: Rec8a and fbxo47. It has been known that Rec8 regulates sister chromatid cohesion and Fbxo47 acts as a ubiquitin E3 ligase. These functions have not been, however, associated with sexual differentiation in germ cells. Our results uncover novel components acting downstream of foxl3, providing insights into the mechanism of germline sex determination.


Asunto(s)
Oryzias/embriología , Procesos de Determinación del Sexo/fisiología , Diferenciación Sexual/genética , Animales , Femenino , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica/métodos , Células Germinativas , Gónadas/citología , Masculino , Oogénesis/fisiología , Oryzias/genética , Espermatogénesis/fisiología
17.
Histochem Cell Biol ; 154(5): 463-480, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32488346

RESUMEN

The notochord defines the axial structure of all vertebrates during development. Notogenesis is a result of major cell reorganization in the mesoderm, the convergence and the extension of the axial cells. However, it is currently not fully understood how these processes act together in a coordinated way during notochord formation. The prechordal plate is an actively migrating cell population in the central mesoderm anterior to the trailing notochordal plate cells. We show that prechordal plate cells express Protocadherin 18a (Pcdh18a), a member of the cadherin superfamily. We find that Pcdh18a-mediated recycling of E-cadherin adhesion complexes transforms prechordal plate cells into a cohesive and fast migrating cell group. In turn, the prechordal plate cells subsequently instruct the trailing mesoderm. We simulated cell migration during early mesoderm formation using a lattice-based mathematical framework and predicted that the requirement for an anterior, local motile cell cluster could guide the intercalation and extension of the posterior, axial cells. Indeed, a grafting experiment validated the prediction and local Pcdh18a expression induced an ectopic prechordal plate-like cell group migrating towards the animal pole. Our findings indicate that the Pcdh18a is important for prechordal plate formation, which influences the trailing mesodermal cell sheet by orchestrating the morphogenesis of the notochord.


Asunto(s)
Cadherinas/metabolismo , Mesodermo/metabolismo , Pez Cebra/embriología , Animales , Cadherinas/genética , Endocitosis , Células HeLa , Humanos , Mesodermo/citología , Mutación , Células Tumorales Cultivadas
18.
Bioessays ; 40(4): e1700135, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29522658

RESUMEN

Centrosomes are the main microtubule organizing centers in animal cells. In particular during embryogenesis, they ensure faithful spindle formation and proper cell divisions. As metazoan centrosomes are eliminated during oogenesis, they have to be reassembled upon fertilization. Most metazoans use the sperm centrioles as templates for new centrosome biogenesis while the egg's cytoplasm re-prepares all components for on-going centrosome duplication in rapidly dividing embryonic cells. We discuss our knowledge and the experimental challenges to analyze zygotic centrosome reformation, which requires genetic experiments to enable scrutinizing respective male and female contributions. Male and female knockout animals and mRNA injection to mimic maternal expression of centrosomal proteins could point a way to the systematic molecular dissection of the process. The most recent data suggest that timely expression of centrosome components in oocytes is the key to zygotic centrosome reformation that uses male sperm as coordinators for de novo centrosome production.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Centro Organizador de los Microtúbulos/metabolismo , Espermatozoides/metabolismo , Animales , Femenino , Masculino , Oocitos/metabolismo
19.
EMBO J ; 34(11): 1572-88, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25908840

RESUMEN

Transcriptional networks defining stemness in adult neural stem cells (NSCs) are largely unknown. We used the proximal cis-regulatory element (pCRE) of the retina-specific homeobox gene 2 (rx2) to address such a network. Lineage analysis in the fish retina identified rx2 as marker for multipotent NSCs. rx2-positive cells located in the peripheral ciliary marginal zone behave as stem cells for the neuroretina, or the retinal pigmented epithelium. We identified upstream regulators of rx2 interrogating the rx2 pCRE in a trans-regulation screen and focused on four TFs (Sox2, Tlx, Gli3, and Her9) activating or repressing rx2 expression. We demonstrated direct interaction of the rx2 pCRE with the four factors in vitro and in vivo. By conditional mosaic gain- and loss-of-function analyses, we validated the activity of those factors on regulating rx2 transcription and consequently modulating neuroretinal and RPE stem cell features. This becomes obvious by the rx2-mutant phenotypes that together with the data presented above identify rx2 as a transcriptional hub balancing stemness of neuroretinal and RPE stem cells in the adult fish retina.


Asunto(s)
Células Madre Adultas/metabolismo , Proteínas de Peces/metabolismo , Proteínas de Homeodominio/metabolismo , Células-Madre Neurales/metabolismo , Oryzias/metabolismo , Retina/metabolismo , Factores de Transcripción/metabolismo , Células Madre Adultas/citología , Animales , Proteínas de Peces/genética , Regulación de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Células-Madre Neurales/citología , Oryzias/genética , Retina/citología , Factores de Transcripción/genética
20.
Development ; 143(11): 1874-83, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27068106

RESUMEN

Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses.


Asunto(s)
Células Ependimogliales/metabolismo , Marcación de Gen , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuroglía/metabolismo , Oryzias/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Cilios/metabolismo , Células Clonales , Regulación de la Expresión Génica , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Dominios Proteicos , Receptores Notch/química , Receptores Notch/metabolismo , Retina/metabolismo , Retina/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA