Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 13 Suppl 4: S10, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22759648

RESUMEN

BACKGROUND: Mutations as sources of evolution have long been the focus of attention in the biomedical literature. Accessing the mutational information and their impacts on protein properties facilitates research in various domains, such as enzymology and pharmacology. However, manually curating the rich and fast growing repository of biomedical literature is expensive and time-consuming. As a solution, text mining approaches have increasingly been deployed in the biomedical domain. While the detection of single-point mutations is well covered by existing systems, challenges still exist in grounding impacts to their respective mutations and recognizing the affected protein properties, in particular kinetic and stability properties together with physical quantities. RESULTS: We present an ontology model for mutation impacts, together with a comprehensive text mining system for extracting and analysing mutation impact information from full-text articles. Organisms, as sources of proteins, are extracted to help disambiguation of genes and proteins. Our system then detects mutation series to correctly ground detected impacts using novel heuristics. It also extracts the affected protein properties, in particular kinetic and stability properties, as well as the magnitude of the effects and validates these relations against the domain ontology. The output of our system can be provided in various formats, in particular by populating an OWL-DL ontology, which can then be queried to provide structured information. The performance of the system is evaluated on our manually annotated corpora. In the impact detection task, our system achieves a precision of 70.4%-71.1%, a recall of 71.3%-71.5%, and grounds the detected impacts with an accuracy of 76.5%-77%. The developed system, including resources, evaluation data and end-user and developer documentation is freely available under an open source license at http://www.semanticsoftware.info/open-mutation-miner. CONCLUSION: We present Open Mutation Miner (OMM), the first comprehensive, fully open-source approach to automatically extract impacts and related relevant information from the biomedical literature. We assessed the performance of our work on manually annotated corpora and the results show the reliability of our approach. The representation of the extracted information into a structured format facilitates knowledge management and aids in database curation and correction. Furthermore, access to the analysis results is provided through multiple interfaces, including web services for automated data integration and desktop-based solutions for end user interactions.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Humanos , Mutación/genética
2.
Bioinformatics ; 27(19): 2721-9, 2011 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828087

RESUMEN

MOTIVATION: Semantic tagging of organism mentions in full-text articles is an important part of literature mining and semantic enrichment solutions. Tagged organism mentions also play a pivotal role in disambiguating other entities in a text, such as proteins. A high-precision organism tagging system must be able to detect the numerous forms of organism mentions, including common names as well as the traditional taxonomic groups: genus, species and strains. In addition, such a system must resolve abbreviations and acronyms, assign the scientific name and if possible link the detected mention to the NCBI Taxonomy database for further semantic queries and literature navigation. RESULTS: We present the OrganismTagger, a hybrid rule-based/machine learning system to extract organism mentions from the literature. It includes tools for automatically generating lexical and ontological resources from a copy of the NCBI Taxonomy database, thereby facilitating system updates by end users. Its novel ontology-based resources can also be reused in other semantic mining and linked data tasks. Each detected organism mention is normalized to a canonical name through the resolution of acronyms and abbreviations and subsequently grounded with an NCBI Taxonomy database ID. In particular, our system combines a novel machine-learning approach with rule-based and lexical methods for detecting strain mentions in documents. On our manually annotated OT corpus, the OrganismTagger achieves a precision of 95%, a recall of 94% and a grounding accuracy of 97.5%. On the manually annotated corpus of Linnaeus-100, the results show a precision of 99%, recall of 97% and grounding accuracy of 97.4%. AVAILABILITY: The OrganismTagger, including supporting tools, resources, training data and manual annotations, as well as end user and developer documentation, is freely available under an open-source license at http://www.semanticsoftware.info/organism-tagger. CONTACT: witte@semanticsoftware.info.


Asunto(s)
Clasificación , Minería de Datos/métodos , Terminología como Asunto , Algoritmos , Inteligencia Artificial , Humanos , Procesamiento de Lenguaje Natural , Publicaciones , Semántica , Unified Medical Language System
3.
BMC Med Inform Decis Mak ; 12 Suppl 1: S5, 2012 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-22595090

RESUMEN

BACKGROUND: Biofuels produced from biomass are considered to be promising sustainable alternatives to fossil fuels. The conversion of lignocellulose into fermentable sugars for biofuels production requires the use of enzyme cocktails that can efficiently and economically hydrolyze lignocellulosic biomass. As many fungi naturally break down lignocellulose, the identification and characterization of the enzymes involved is a key challenge in the research and development of biomass-derived products and fuels. One approach to meeting this challenge is to mine the rapidly-expanding repertoire of microbial genomes for enzymes with the appropriate catalytic properties. RESULTS: Semantic technologies, including natural language processing, ontologies, semantic Web services and Web-based collaboration tools, promise to support users in handling complex data, thereby facilitating knowledge-intensive tasks. An ongoing challenge is to select the appropriate technologies and combine them in a coherent system that brings measurable improvements to the users. We present our ongoing development of a semantic infrastructure in support of genomics-based lignocellulose research. Part of this effort is the automated curation of knowledge from information on fungal enzymes that is available in the literature and genome resources. CONCLUSIONS: Working closely with fungal biology researchers who manually curate the existing literature, we developed ontological natural language processing pipelines integrated in a Web-based interface to assist them in two main tasks: mining the literature for relevant knowledge, and at the same time providing rich and semantically linked information.


Asunto(s)
Biología Computacional , Minería de Datos/métodos , Lignina , Apoyo a la Investigación como Asunto , Semántica , Algoritmos , Biomasa , Interfaces Cerebro-Computador , Celulasa/biosíntesis , Recolección de Datos/instrumentación , Humanos , Almacenamiento y Recuperación de la Información/métodos , Internet , Procesamiento de Lenguaje Natural , Vocabulario Controlado
4.
BMC Genomics ; 11 Suppl 4: S24, 2010 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21143808

RESUMEN

BACKGROUND: Mutation impact extraction is a hitherto unaccomplished task in state of the art mutation extraction systems. Protein mutations and their impacts on protein properties are hidden in scientific literature, making them poorly accessible for protein engineers and inaccessible for phenotype-prediction systems that currently depend on manually curated genomic variation databases. RESULTS: We present the first rule-based approach for the extraction of mutation impacts on protein properties, categorizing their directionality as positive, negative or neutral. Furthermore protein and mutation mentions are grounded to their respective UniProtKB IDs and selected protein properties, namely protein functions to concepts found in the Gene Ontology. The extracted entities are populated to an OWL-DL Mutation Impact ontology facilitating complex querying for mutation impacts using SPARQL. We illustrate retrieval of proteins and mutant sequences for a given direction of impact on specific protein properties. Moreover we provide programmatic access to the data through semantic web services using the SADI (Semantic Automated Discovery and Integration) framework. CONCLUSION: We address the problem of access to legacy mutation data in unstructured form through the creation of novel mutation impact extraction methods which are evaluated on a corpus of full-text articles on haloalkane dehalogenases, tagged by domain experts. Our approaches show state of the art levels of precision and recall for Mutation Grounding and respectable level of precision but lower recall for the task of Mutant-Impact relation extraction. The system is deployed using text mining and semantic web technologies with the goal of publishing to a broad spectrum of consumers.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Mutación , Semántica , Bases de Datos de Proteínas , Almacenamiento y Recuperación de la Información/métodos , Mutación Puntual , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Publicaciones , Alineación de Secuencia/métodos , Homología de Secuencia de Aminoácido
5.
J Bioinform Comput Biol ; 5(6): 1339-59, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18172932

RESUMEN

The development of text analysis systems targeting the extraction of information about mutations from research publications is an emergent topic in biomedical research. Current systems differ in both scope and approach, thus preventing a meaningful comparison of their performance and therefore possible synergies. To overcome this evaluation bottleneck, we developed a comprehensive framework for the systematic analysis of mutation extraction systems, precisely defining tasks and corresponding evaluation metrics, that will allow a comparison of existing and future applications.


Asunto(s)
Biología Computacional , Mutación , Proteínas/genética , Bases de Datos Genéticas , Almacenamiento y Recuperación de la Información , Procesamiento de Lenguaje Natural , Mutación Puntual , Polimorfismo de Nucleótido Simple
6.
J Biomed Semantics ; 2 Suppl 5: S11, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-22166494

RESUMEN

BACKGROUND: Competitions in text mining have been used to measure the performance of automatic text processing solutions against a manually annotated gold standard corpus (GSC). The preparation of the GSC is time-consuming and costly and the final corpus consists at the most of a few thousand documents annotated with a limited set of semantic groups. To overcome these shortcomings, the CALBC project partners (PPs) have produced a large-scale annotated biomedical corpus with four different semantic groups through the harmonisation of annotations from automatic text mining solutions, the first version of the Silver Standard Corpus (SSC-I). The four semantic groups are chemical entities and drugs (CHED), genes and proteins (PRGE), diseases and disorders (DISO) and species (SPE). This corpus has been used for the First CALBC Challenge asking the participants to annotate the corpus with their text processing solutions. RESULTS: All four PPs from the CALBC project and in addition, 12 challenge participants (CPs) contributed annotated data sets for an evaluation against the SSC-I. CPs could ignore the training data and deliver the annotations from their genuine annotation system, or could train a machine-learning approach on the provided pre-annotated data. In general, the performances of the annotation solutions were lower for entities from the categories CHED and PRGE in comparison to the identification of entities categorized as DISO and SPE. The best performance over all semantic groups were achieved from two annotation solutions that have been trained on the SSC-I.The data sets from participants were used to generate the harmonised Silver Standard Corpus II (SSC-II), if the participant did not make use of the annotated data set from the SSC-I for training purposes. The performances of the participants' solutions were again measured against the SSC-II. The performances of the annotation solutions showed again better results for DISO and SPE in comparison to CHED and PRGE. CONCLUSIONS: The SSC-I delivers a large set of annotations (1,121,705) for a large number of documents (100,000 Medline abstracts). The annotations cover four different semantic groups and are sufficiently homogeneous to be reproduced with a trained classifier leading to an average F-measure of 85%. Benchmarking the annotation solutions against the SSC-II leads to better performance for the CPs' annotation solutions in comparison to the SSC-I.

7.
Int J Bioinform Res Appl ; 3(3): 389-413, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18048198

RESUMEN

The biomedical literature is growing at an ever-increasing rate, which pronounces the need to support scientists with advanced, automated means of accessing knowledge. We investigate a novel approach employing description logics (DL)-based queries made to formal ontologies that have been created using the results of text mining full-text research papers. In this paradigm, an OWL-DL ontology becomes populated with instances detected through natural language processing (NLP). The generated ontology can be queried by biologists using DL reasoners or integrated into bioinformatics workflows for further automated analyses. We demonstrate the feasibility of this approach with a system targeting the protein mutation literature.


Asunto(s)
Biología Computacional , Ingeniería de Proteínas , Bases de Datos de Proteínas , Mutación , Procesamiento de Lenguaje Natural , Publicaciones , Semántica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA