Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 143(14): 1391-1398, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38153913

RESUMEN

ABSTRACT: Distinct diagnostic entities within BCR::ABL1-positive acute lymphoblastic leukemia (ALL) are currently defined by the International Consensus Classification of myeloid neoplasms and acute leukemias (ICC): "lymphoid only", with BCR::ABL1 observed exclusively in lymphatic precursors, vs "multilineage", where BCR::ABL1 is also present in other hematopoietic lineages. Here, we analyzed transcriptomes of 327 BCR::ABL1-positive patients with ALL (age, 2-84 years; median, 46 years) and identified 2 main gene expression clusters reproducible across 4 independent patient cohorts. Fluorescence in situ hybridization analysis of fluorescence-activated cell-sorted hematopoietic compartments showed distinct BCR::ABL1 involvement in myeloid cells for these clusters (n = 18/18 vs n = 3/16 patients; P < .001), indicating that a multilineage or lymphoid BCR::ABL1 subtype can be inferred from gene expression. Further subclusters grouped samples according to cooperating genomic events (multilineage: HBS1L deletion or monosomy 7; lymphoid: IKZF1-/- or CDKN2A/PAX5 deletions/hyperdiploidy). A novel HSB1L transcript was highly specific for BCR::ABL1 multilineage cases independent of HBS1L genomic aberrations. Treatment on current German Multicenter Study Group for Adult ALL (GMALL) protocols resulted in comparable disease-free survival (DFS) for multilineage vs lymphoid cluster patients (3-year DFS: 70% vs 61%; P = .530; n = 91). However, the IKZF1-/- enriched lymphoid subcluster was associated with inferior DFS, whereas hyperdiploid cases showed a superior outcome. Thus, gene expression clusters define underlying developmental trajectories and distinct patterns of cooperating events in BCR::ABL1-positive ALL with prognostic relevance.


Asunto(s)
Proteínas de Fusión bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Humanos , Persona de Mediana Edad , Adulto Joven , Enfermedad Aguda , Deleción Cromosómica , Proteínas de Fusión bcr-abl/genética , Genómica , Hibridación Fluorescente in Situ , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética
2.
Cell ; 145(5): 707-19, 2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21620136

RESUMEN

Defining the contributions and interactions of paternal and maternal genomes during embryo development is critical to understand the fundamental processes involved in hybrid vigor, hybrid sterility, and reproductive isolation. To determine the parental contributions and their regulation during Arabidopsis embryogenesis, we combined deep-sequencing-based RNA profiling and genetic analyses. At the 2-4 cell stage there is a strong, genome-wide dominance of maternal transcripts, although transcripts are contributed by both parental genomes. At the globular stage the relative paternal contribution is higher, largely due to a gradual activation of the paternal genome. We identified two antagonistic maternal pathways that control these parental contributions. Paternal alleles are initially downregulated by the chromatin siRNA pathway, linked to DNA and histone methylation, whereas transcriptional activation requires maternal activity of the histone chaperone complex CAF1. Our results define maternal epigenetic pathways controlling the parental contributions in plant embryos, which are distinct from those regulating genomic imprinting.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/genética , Epigenómica , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/metabolismo , Perfilación de la Expresión Génica , Genoma de Planta , N-Metiltransferasa de Histona-Lisina/metabolismo , Óvulo Vegetal/metabolismo , Factores de Empalme de ARN , ARN Interferente Pequeño/metabolismo , Semillas/genética , Activación Transcripcional
3.
Alzheimers Dement ; 20(10): 6722-6739, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39193893

RESUMEN

INTRODUCTION: We investigated blood DNA methylation patterns associated with 15 well-established cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathophysiology, neuroinflammation, and neurodegeneration. METHODS: We assessed DNA methylation in 885 blood samples from the European Medical Information Framework for Alzheimer's Disease (EMIF-AD) study using the EPIC array. RESULTS: We identified Bonferroni-significant differential methylation associated with CSF YKL-40 (five loci) and neurofilament light chain (NfL; seven loci) levels, with two of the loci associated with CSF YKL-40 levels correlating with plasma YKL-40 levels. A co-localization analysis showed shared genetic variants underlying YKL-40 DNA methylation and CSF protein levels, with evidence that DNA methylation mediates the association between genotype and protein levels. Weighted gene correlation network analysis identified two modules of co-methylated loci correlated with several amyloid measures and enriched in pathways associated with lipoproteins and development. DISCUSSION: We conducted the most comprehensive epigenome-wide association study (EWAS) of AD-relevant CSF biomarkers to date. Future work should explore the relationship between YKL-40 genotype, DNA methylation, and protein levels in the brain. HIGHLIGHTS: Blood DNA methylation was assessed in the EMIF-AD MBD study. Epigenome-wide association studies (EWASs) were performed for 15 Alzheimer's disease (AD)-relevant cerebrospinal fluid (CSF) biomarker measures. Five Bonferroni-significant loci were associated with YKL-40 levels and seven with neurofilament light chain (NfL). DNA methylation in YKL-40 co-localized with previously reported genetic variation. DNA methylation potentially mediates the effect of single-nucleotide polymorphisms (SNPs) in YKL-40 on CSF protein levels.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteína 1 Similar a Quitinasa-3 , Metilación de ADN , Proteínas de Neurofilamentos , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Metilación de ADN/genética , Proteína 1 Similar a Quitinasa-3/líquido cefalorraquídeo , Proteína 1 Similar a Quitinasa-3/genética , Proteína 1 Similar a Quitinasa-3/sangre , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Femenino , Masculino , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Proteínas de Neurofilamentos/sangre , Anciano , Persona de Mediana Edad , Estudio de Asociación del Genoma Completo
4.
Alzheimers Dement ; 20(10): 6682-6698, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39193899

RESUMEN

INTRODUCTION: The established link between DNA methylation and pathophysiology of dementia, along with its potential role as a molecular mediator of lifestyle and environmental influences, positions blood-derived DNA methylation as a promising tool for early dementia risk detection. METHODS: In conjunction with an extensive array of machine learning techniques, we employed whole blood genome-wide DNA methylation data as a surrogate for 14 modifiable and non-modifiable factors in the assessment of dementia risk in independent dementia cohorts. RESULTS: We established a multivariate methylation risk score (MMRS) for identifying mild cognitive impairment cross-sectionally, independent of age and sex (P = 2.0 × 10-3). This score significantly predicted the prospective development of cognitive impairments in independent studies of Alzheimer's disease (hazard ratio for Rey's Auditory Verbal Learning Test (RAVLT)-Learning = 2.47) and Parkinson's disease (hazard ratio for MCI/dementia = 2.59). DISCUSSION: Our work shows the potential of employing blood-derived DNA methylation data in the assessment of dementia risk. HIGHLIGHTS: We used whole blood DNA methylation as a surrogate for 14 dementia risk factors. Created a multivariate methylation risk score for predicting cognitive impairment. Emphasized the role of machine learning and omics data in predicting dementia. The score predicts cognitive impairment development at the population level.


Asunto(s)
Disfunción Cognitiva , Metilación de ADN , Demencia , Humanos , Metilación de ADN/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Masculino , Femenino , Anciano , Demencia/genética , Demencia/sangre , Demencia/diagnóstico , Factores de Riesgo , Aprendizaje Automático , Estudios Transversales , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/diagnóstico , Estudios Prospectivos , Medición de Riesgo , Anciano de 80 o más Años
5.
J Immunol ; 204(6): 1571-1581, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-32060134

RESUMEN

T cell-mediated immune response plays a crucial role in controlling Trypanosoma cruzi infection and parasite burden, but it is also involved in the clinical onset and progression of chronic Chagas' disease. Therefore, the study of T cells is central to the understanding of the immune response against the parasite and its implications for the infected organism. The complexity of the parasite-host interactions hampers the identification and characterization of T cell-activating epitopes. We approached this issue by combining in silico and in vitro methods to interrogate patients' T cells specificity. Fifty T. cruzi peptides predicted to bind a broad range of class I and II HLA molecules were selected for in vitro screening against PBMC samples from a cohort of chronic Chagas' disease patients, using IFN-γ secretion as a readout. Seven of these peptides were shown to activate this type of T cell response, and four out of these contain class I and II epitopes that, to our knowledge, are first described in this study. The remaining three contain sequences that had been previously demonstrated to induce CD8+ T cell response in Chagas' disease patients, or bind HLA-A*02:01, but are, in this study, demonstrated to engage CD4+ T cells. We also assessed the degree of differentiation of activated T cells and looked into the HLA variants that might restrict the recognition of these peptides in the context of human T. cruzi infection.


Asunto(s)
Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Cardiomiopatía Chagásica/inmunología , Epítopos de Linfocito T/inmunología , Trypanosoma cruzi/inmunología , Antígenos de Protozoos/metabolismo , Argentina , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/inmunología , Cardiomiopatía Chagásica/sangre , Cardiomiopatía Chagásica/parasitología , Simulación por Computador , Ensayo de Immunospot Ligado a Enzimas , Epítopos de Linfocito T/metabolismo , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Humanos , Inmunidad Celular , Memoria Inmunológica , Ensayos de Liberación de Interferón gamma , Activación de Linfocitos , Masculino , Trypanosoma cruzi/metabolismo
6.
Hum Mol Genet ; 28(12): 2078-2092, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30590525

RESUMEN

Genotype imputation of the human leukocyte antigen (HLA) region is a cost-effective means to infer classical HLA alleles from inexpensive and dense SNP array data. In the research setting, imputation helps avoid costs for wet lab-based HLA typing and thus renders association analyses of the HLA in large cohorts feasible. Yet, most HLA imputation reference panels target Caucasian ethnicities and multi-ethnic panels are scarce. We compiled a high-quality multi-ethnic reference panel based on genotypes measured with Illumina's Immunochip genotyping array and HLA types established using a high-resolution next generation sequencing approach. Our reference panel includes more than 1,300 samples from Germany, Malta, China, India, Iran, Japan and Korea and samples of African American ancestry for all classical HLA class I and II alleles including HLA-DRB3/4/5. Applying extensive cross-validation, we benchmarked the imputation using the HLA imputation tool HIBAG, our multi-ethnic reference and an independent, previously published data set compiled of subpopulations of the 1000 Genomes project. We achieved average imputation accuracies higher than 0.924 for the commonly studied HLA-A, -B, -C, -DQB1 and -DRB1 genes across all ethnicities. We investigated allele-specific imputation challenges in regard to geographic origin of the samples using sensitivity and specificity measurements as well as allele frequencies and identified HLA alleles that are challenging to impute for each of the populations separately. In conclusion, our new multi-ethnic reference data set allows for high resolution HLA imputation of genotypes at all classical HLA class I and II genes including the HLA-DRB3/4/5 loci based on diverse ancestry populations.


Asunto(s)
Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase I/genética , Negro o Afroamericano/etnología , Negro o Afroamericano/genética , Alelos , Pueblo Asiatico , Benchmarking , Análisis por Conglomerados , Etnicidad , Frecuencia de los Genes , Genotipo , Antígenos HLA/genética , Cadenas HLA-DRB3/genética , Cadenas HLA-DRB4/genética , Cadenas HLA-DRB5/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Polimorfismo de Nucleótido Simple , Estudios Retrospectivos , Población Blanca/etnología , Población Blanca/genética
7.
J Autoimmun ; 123: 102705, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34325306

RESUMEN

BACKGROUND: Pemphigus is a group of bullous diseases characterized by acantholysis and skin blisters. As for other autoimmune diseases, the strongest genetic associations found so far for pemphigus foliaceus (PF) and vulgaris (PV) are with alleles of HLA genes. However, apart from protein-coding genes, the MHC region includes a set of poorly explored long non-coding RNA (lncRNA) genes, the HLA complex group (HCG). OBJECTIVES: To investigate if HCG lncRNA alleles are associated with pemphigus susceptibility. METHODS AND RESULTS: We analyzed SNPs in 13 HCG lncRNA genes, both in PV (Germany: 241 patients; 1,188 controls) and endemic PF (Brazil: 227 patients; 194 controls), applying multivariate logistic regression. We found 55 associations with PV (pcorr < 0.01) and nine with endemic PF (pcorr < 0.05), the majority located in TSBP1-AS1 (which includes HCG23) and HCG27 lncRNA genes, independently of HLA alleles previously associated with pemphigus. The association of TSBP1-AS1 rs3129949*A allele was further replicated in sporadic PF (p = 0.027, OR = 0.054; 75 patients and 150 controls, all from Germany). Next, we evaluated the expression levels of TSBP1-AS1, TSBP1, HCG23, and HCG27 in blood mononuclear cells of Brazilian patients and controls. HCG27 was upregulated in endemic PF (p = 0.035, log2 FC = 1.3), while TSBP1-AS1 was downregulated in PV (p = 0.029, log2 FC = -1.29). The same expression patterns were also seen in cultured keratinocytes stimulated with IgG antibodies from patients and controls from Germany. TSBP1 mRNA levels were also decreased in endemic PF blood cells (p = 0.042, log2 FC = -2.14). TSBP1-AS1 and HCG27 were also observed downregulated in CD19+ cells of endemic PF (p < 0.01, log2 FC = -0.226 and -0.46 respectively). CONCLUSIONS: HCG lncRNAs are associated with susceptibility to pemphigus, being TSBP1-AS1 and HCG27 also differentially expressed in distinct cell populations. These results suggest a role for HCG lncRNAs in pemphigus autoimmunity.


Asunto(s)
Antígenos HLA/genética , Pénfigo/genética , Pénfigo/inmunología , ARN Largo no Codificante/fisiología , Humanos , Queratinocitos/inmunología , Polimorfismo Genético , Polimorfismo de Nucleótido Simple
8.
Exp Dermatol ; 30(6): 831-840, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33394553

RESUMEN

Pemphigus foliaceus (PF) is an autoimmune blistering disease of the skin, clinically characterized by erosions and, histopathologically, by acantholysis. PF is endemic in the Brazilian Central-Western region. Numerous single nucleotide polymorphisms (SNPs) have been shown to affect the susceptibility for PF, including SNPs at long non-coding RNA (lncRNA) genes, which are known to participate in many physiological and pathogenic processes, such as autoimmunity. Here, we investigated whether the genetic variation of immune-related lncRNA genes affects the risk for endemic and sporadic forms of PF. We analysed 692 novel SNPs for PF from 135 immune-related lncRNA genes in 227 endemic PF patients and 194 controls. The SNPs were genotyped by Illumina microarray and analysed by applying logistic regression at additive model, with correction for sex and population structure. Six associated SNPs were also evaluated in an independent German cohort of 76 sporadic PF patients and 150 controls. Further, we measured the expression levels of two associated lncRNA genes (LINC-PINT and LY86-AS1) by quantitative PCR, stratified by genotypes, in peripheral blood mononuclear cells of healthy subjects. We found 27 SNPs in 11 lncRNA genes associated with endemic PF (p < .05 without overlapping with protein-coding genes). Among them, the LINC-PINT SNP rs10228040*A (OR = 1.47, p = .012) was also associated with increased susceptibility for sporadic PF (OR = 2.28, p = .002). Moreover, the A+ carriers of LY86-AS1*rs12192707 mark lowest LY86-AS1 RNA levels, which might be associated with a decreasing autoimmune response. Our results suggest a critical role of lncRNA variants in immunopathogenesis of both PF endemic and sporadic forms.


Asunto(s)
Antígenos de Superficie/genética , Pénfigo/genética , Polimorfismo de Nucleótido Simple/genética , ARN Largo no Codificante/genética , Antígenos de Superficie/inmunología , Predisposición Genética a la Enfermedad , Humanos , Pénfigo/inmunología , Polimorfismo de Nucleótido Simple/inmunología , ARN Largo no Codificante/inmunología
9.
Alzheimers Dement ; 17(10): 1628-1640, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33991015

RESUMEN

INTRODUCTION: Neurofilament light (NfL), chitinase-3-like protein 1 (YKL-40), and neurogranin (Ng) are biomarkers for Alzheimer's disease (AD) to monitor axonal damage, astroglial activation, and synaptic degeneration, respectively. METHODS: We performed genome-wide association studies (GWAS) using DNA and cerebrospinal fluid (CSF) samples from the EMIF-AD Multimodal Biomarker Discovery study for discovery, and the Alzheimer's Disease Neuroimaging Initiative study for validation analyses. GWAS were performed for all three CSF biomarkers using linear regression models adjusting for relevant covariates. RESULTS: We identify novel genome-wide significant associations between DNA variants in TMEM106B and CSF levels of NfL, and between CPOX and YKL-40. We confirm previous work suggesting that YKL-40 levels are associated with DNA variants in CHI3L1. DISCUSSION: Our study provides important new insights into the genetic architecture underlying interindividual variation in three AD-related CSF biomarkers. In particular, our data shed light on the sequence of events regarding the initiation and progression of neuropathological processes relevant in AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Biomarcadores/líquido cefalorraquídeo , Estudio de Asociación del Genoma Completo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Anciano , Proteína 1 Similar a Quitinasa-3/genética , Femenino , Humanos , Masculino , Proteínas de Neurofilamentos/genética , Neurogranina/líquido cefalorraquídeo
11.
Mol Ecol ; 26(5): 1285-1305, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28100011

RESUMEN

Identifying causal genetic variants underlying heritable phenotypic variation is a long-standing goal in evolutionary genetics. We previously identified several quantitative trait loci (QTL) for five morphological traits in a captive population of zebra finches (Taeniopygia guttata) by whole-genome linkage mapping. We here follow up on these studies with the aim to narrow down on the quantitative trait variants (QTN) in one wild and three captive populations. First, we performed an association study using 672 single nucleotide polymorphisms (SNPs) within candidate genes located in the previously identified QTL regions in a sample of 939 wild-caught zebra finches. Then, we validated the most promising SNP-phenotype associations (n = 25 SNPs) in 5228 birds from four populations. Genotype-phenotype associations were generally weak in the wild population, where linkage disequilibrium (LD) spans only short genomic distances. In contrast, in captive populations, where LD blocks are large, apparent SNP effects on morphological traits (i.e. associations) were highly repeatable with independent data from the same population. Most of those SNPs also showed significant associations with the same trait in other captive populations, but the direction and magnitude of these effects varied among populations. This suggests that the tested SNPs are not the causal QTN but rather physically linked to them, and that LD between SNPs and causal variants differs between populations due to founder effects. While the identification of QTN remains challenging in nonmodel organisms, we illustrate that it is indeed possible to confirm the location and magnitude of QTL in a population with stable linkage between markers and causal variants.


Asunto(s)
Pinzones/genética , Genética de Población , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Animales , Mapeo Cromosómico , Pinzones/anatomía & histología , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple
12.
Nucleic Acids Res ; 43(11): e70, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25753671

RESUMEN

The human leukocyte antigen (HLA) complex contains the most polymorphic genes in the human genome. The classical HLA class I and II genes define the specificity of adaptive immune responses. Genetic variation at the HLA genes is associated with susceptibility to autoimmune and infectious diseases and plays a major role in transplantation medicine and immunology. Currently, the HLA genes are characterized using Sanger- or next-generation sequencing (NGS) of a limited amplicon repertoire or labeled oligonucleotides for allele-specific sequences. High-quality NGS-based methods are in proprietary use and not publicly available. Here, we introduce the first highly automated open-kit/open-source HLA-typing method for NGS. The method employs in-solution targeted capturing of the classical class I (HLA-A, HLA-B, HLA-C) and class II HLA genes (HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1, HLA-DPB1). The calling algorithm allows for highly confident allele-calling to three-field resolution (cDNA nucleotide variants). The method was validated on 357 commercially available DNA samples with known HLA alleles obtained by classical typing. Our results showed on average an accurate allele call rate of 0.99 in a fully automated manner, identifying also errors in the reference data. Finally, our method provides the flexibility to add further enrichment target regions.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Prueba de Histocompatibilidad/métodos , Análisis de Secuencia de ADN/métodos , Alelos , Antígenos HLA/genética , Humanos , Programas Informáticos
13.
Hum Mol Genet ; 23(22): 6069-80, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24939913

RESUMEN

Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fisher's exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fisher's exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.


Asunto(s)
Duplicación Cromosómica , Cromosomas Humanos Par 16/genética , Epilepsia Rolándica/genética , Niño , Preescolar , Cromosomas Humanos Par 1/genética , Cromosomas Humanos Par 15/genética , Cromosomas Humanos Par 22/genética , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Lactante , Masculino , Polimorfismo de Nucleótido Simple
14.
BMC Med Genet ; 17: 26, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27037036

RESUMEN

BACKGROUND: Ulcerative colitis (UC), a complex polygenic disorder, is one of the main subphenotypes of inflammatory bowel disease. A comprehensive dissection of the genetic etiology of UC needs to assess the contribution of rare genetic variants including copy number variations (CNVs) to disease risk. In this study, we performed a multi-step genome-wide case-control analysis to interrogate the presence of disease-relevant rare copy number variants. METHODS: One thousand one hundred twenty-one German UC patients and 1770 healthy controls were initially screened for rare deletions and duplications employing SNP-array data. Quantitative PCR and high density custom array-CGH were used for validation of identified CNVs and fine mapping. Two main follow-up panels consisted of an independent cohort of 451 cases and 1274 controls, in which CNVs were assayed through quantitative PCR, and a British cohort of 2396 cases versus 4886 controls with CNV genotypes based on array data. Additional sample sets were assessed for targeted and in silico replication. RESULTS: Twenty-four rare copy number variants (14 deletions and 10 duplications), overrepresented in UC patients were identified in the initial screening panel. Follow-up of these CNV regions in four independent case-control series as well as an additional public in silico control group (totaling 4439 UC patients and 15,961 healthy controls) revealed three copy number variants enriched in UC patients; a 15.8 kb deletion upstream of ABCC4 and CLDN10 at13q32.1 (0.43% cases, 0.11% controls), a 119 kb duplication at 7p22.1, overlapping RNF216, ZNF815, OCM and CCZ1 (0.13% cases, 0.01% controls) and a 134 kb large duplication upstream of the KCNK9 gene at 8q24.3 (0.22% carriers among cases, 0.03% carriers among controls). The trend of association with UC was present after the P-values were corrected for combining data from different subpopulations. Break-point mapping of the deleted region suggested non-allelic homologous recombination as the mechanism underlying its formation. CONCLUSION: Our study presents a pragmatic approach for effective rare CNV screening of SNP-array data sets and implicates the potential contribution of rare structural variants in the pathogenesis of UC.


Asunto(s)
Colitis Ulcerosa/genética , Variaciones en el Número de Copia de ADN , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Hibridación Genómica Comparativa , Femenino , Eliminación de Gen , Duplicación de Gen , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Adulto Joven
15.
Nat Genet ; 39(8): 995-9, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17632509

RESUMEN

With an overall prevalence of 10-20%, gallstone disease (cholelithiasis) represents one of the most frequent and economically relevant health problems of industrialized countries. We performed an association scan of >500,000 SNPs in 280 individuals with gallstones and 360 controls. A follow-up study of the 235 most significant SNPs in 1,105 affected individuals and 873 controls replicated the disease association of SNP A-1791411 in ABCG8 (allelic P value P(CCA) = 4.1 x 10(-9)), which was subsequently attributed to coding variant rs11887534 (D19H). Additional replication was achieved in 728 German (P = 2.8 x 10(-7)) and 167 Chilean subjects (P = 0.02). The overall odds ratio for D19H carriership was 2.2 (95% confidence interval: 1.8-2.6, P = 1.4 x 10(-14)) in the full German sample. Association was stronger in subjects with cholesterol gallstones (odds ratio = 3.3), suggesting that His19 might be associated with a more efficient transport of cholesterol into the bile.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Colelitiasis/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Transportadoras de Casetes de Unión a ATP/metabolismo , Adulto , Anciano , Colelitiasis/metabolismo , Colesterol/metabolismo , Humanos , Persona de Mediana Edad
16.
Nucleic Acids Res ; 41(1): e16, 2013 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-22965131

RESUMEN

Scientists working with single-nucleotide variants (SNVs), inferred by next-generation sequencing software, often need further information regarding true variants, artifacts and sequence coverage gaps. In clinical diagnostics, e.g. SNVs must usually be validated by visual inspection or several independent SNV-callers. We here demonstrate that 0.5-60% of relevant SNVs might not be detected due to coverage gaps, or might be misidentified. Even low error rates can overwhelm the true biological signal, especially in clinical diagnostics, in research comparing healthy with affected cells, in archaeogenetic dating or in forensics. For these reasons, we have developed a package called pibase, which is applicable to diploid and haploid genome, exome or targeted enrichment data. pibase extracts details on nucleotides from alignment files at user-specified coordinates and identifies reproducible genotypes, if present. In test cases pibase identifies genotypes at 99.98% specificity, 10-fold better than other tools. pibase also provides pair-wise comparisons between healthy and affected cells using nucleotide signals (10-fold more accurately than a genotype-based approach, as we show in our case study of monozygotic twins). This comparison tool also solves the problem of detecting allelic imbalance within heterozygous SNVs in copy number variation loci, or in heterogeneous tumor sequences.


Asunto(s)
Variación Genética , Secuenciación de Nucleótidos de Alto Rendimiento , Alineación de Secuencia , Análisis de Secuencia de ADN , Programas Informáticos , Genómica , Humanos , Filogenia , Reproducibilidad de los Resultados , Gemelos Monocigóticos/genética
17.
Hepatology ; 58(3): 1074-83, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22821403

RESUMEN

UNLABELLED: Approximately 60%-80% of patients with primary sclerosing cholangitis (PSC) have concurrent ulcerative colitis (UC). Previous genome-wide association studies (GWAS) in PSC have detected a number of susceptibility loci that also show associations in UC and other immune-mediated diseases. We aimed to systematically compare genetic associations in PSC with genotype data in UC patients with the aim of detecting new susceptibility loci for PSC. We performed combined analyses of GWAS for PSC and UC comprising 392 PSC cases, 987 UC cases, and 2,977 controls and followed up top association signals in an additional 1,012 PSC cases, 4,444 UC cases, and 11,659 controls. We discovered novel genome-wide significant associations with PSC at 2q37 [rs3749171 at G-protein-coupled receptor 35 (GPR35); P = 3.0 × 10(-9) in the overall study population, combined odds ratio [OR] and 95% confidence interval [CI] of 1.39 (1.24-1.55)] and at 18q21 [rs1452787 at transcription factor 4 (TCF4); P = 2.61 × 10(-8) , OR (95% CI) = 0.75 (0.68-0.83)]. In addition, several suggestive PSC associations were detected. The GPR35 rs3749171 is a missense single nucleotide polymorphism resulting in a shift from threonine to methionine. Structural modeling showed that rs3749171 is located in the third transmembrane helix of GPR35 and could possibly alter efficiency of signaling through the GPR35 receptor. CONCLUSION: By refining the analysis of a PSC GWAS by parallel assessments in a UC GWAS, we were able to detect two novel risk loci at genome-wide significance levels. GPR35 shows associations in both UC and PSC, whereas TCF4 represents a PSC risk locus not associated with UC. Both loci may represent previously unexplored aspects of PSC pathogenesis.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Colangitis Esclerosante/genética , Colitis Ulcerosa/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Receptores Acoplados a Proteínas G/genética , Factores de Transcripción/genética , Bélgica , Estudios de Casos y Controles , Colangitis Esclerosante/epidemiología , Colangitis Esclerosante/etnología , Colitis Ulcerosa/epidemiología , Colitis Ulcerosa/etnología , Comorbilidad , Sitios Genéticos/genética , Predisposición Genética a la Enfermedad/etnología , Genotipo , Alemania , Humanos , Países Bajos , Noruega , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Factor de Transcripción 4 , Reino Unido
18.
Brain Commun ; 6(3): fcae146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863574

RESUMEN

Idiopathic Parkinson's disease is determined by a combination of genetic and environmental factors. Recently, the first genome-wide association study on short-tandem repeats in Parkinson's disease reported on eight suggestive short-tandem repeat-based risk loci (α = 5.3 × 10-6), of which four were novel, i.e. they had not been implicated in Parkinson's disease risk by genome-wide association analyses of single-nucleotide polymorphisms before. Here, we tested these eight candidate short-tandem repeats in a large, independent Parkinson's disease case-control dataset (n = 4757). Furthermore, we combined the results from both studies by meta-analysis resulting in the largest Parkinson's disease genome-wide association study of short-tandem repeats to date (n = 43 844). Lastly, we investigated whether leading short-tandem repeat risk variants exert functional effects on gene expression regulation based on methylation quantitative trait locus data in human 'post-mortem' brain (n = 142). None of the eight previously reported short-tandem repeats were significantly associated with Parkinson's disease in our independent dataset after multiple testing correction (α = 6.25 × 10-3). However, we observed modest support for short-tandem repeats near CCAR2 and NCOR1 in the updated meta-analyses of all available data. While the genome-wide meta-analysis did not reveal additional study-wide significant (α = 6.3 × 10-7) short-tandem repeat signals, we identified seven novel suggestive Parkinson's disease short-tandem repeat risk loci (α = 5.3 × 10-6). Of these, especially a short-tandem repeat near MEIOSIN showed consistent evidence for association across datasets. CCAR2, NCOR1 and one novel suggestive locus identified here (LINC01012) emerged from colocalization analyses showing evidence for a shared causal short-tandem repeat variant affecting both Parkinson's disease risk and cis DNA methylation in brain. Larger studies, ideally using short-tandem repeats called from whole-sequencing data, are needed to more fully investigate their role in Parkinson's disease.

19.
Eur Respir J ; 41(4): 888-900, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22936702

RESUMEN

Sarcoidosis is a systemic inflammatory disease of unknown aetiology, influenced by genetic and environmental factors. However, the loci so far identified for sarcoidosis explain only a part of its assumed heritability. To identify further susceptibility loci, we performed a genome-wide association analysis using the Affymetrix 6.0 Human GeneChip followed by validation and replication stages. After quality control, 637 cases, 1233 controls and 677 619 single-nucleotide polymorphisms (SNPs) were available for an initial screening. 99 SNPs were selected for validation in an independent study panel (1664 patients, 2932 controls). SNP rs1050045 was significantly associated with sarcoidosis (corrected p=0.0215) in the validation panel and yielded a p-value of 9.22 × 10(-8) (OR 1.24) in the meta-analysis of the screening and validation stage. A meta-analysis of three populations from Germany, the Czech Republic and Sweden confirmed this finding (p = 0.024; OR 1.14). Fine-mapping and mRNA expression studies pointed to osteosarcoma amplified 9 (OS9) as the most likely candidate for the underlying risk factor. The OS9 protein plays an important role in endoplasmic reticulum-associated protein degradation and acts during Toll-like receptor induced activation of myeloid cells. Expression analyses of OS9 mRNA provide evidence for a functional mechanism underlying the detected association signal.


Asunto(s)
Cromosomas Humanos Par 12 , Estudio de Asociación del Genoma Completo , Enfermedades Pulmonares/genética , Sarcoidosis/genética , Estudios de Casos y Controles , Mapeo Cromosómico/métodos , Enfermedad Crónica , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Enfermedades Pulmonares/diagnóstico , Polimorfismo de Nucleótido Simple , ARN Mensajero/metabolismo , Factores de Riesgo , Sarcoidosis/diagnóstico , Análisis de Secuencia de ADN
20.
Blood Adv ; 7(6): 878-892, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36129841

RESUMEN

In the era of blood group genomics, reference collections of complete and fully resolved blood group gene alleles have gained high importance. For most blood groups, however, such collections are currently lacking, as resolving full-length gene sequences as haplotypes (ie, separated maternal/paternal origin) remains exceedingly difficult with both Sanger and short-read next-generation sequencing. Using the latest third-generation long-read sequencing, we generated a collection of fully resolved sequences for all 6 main ABO allele groups: ABO∗A1/A2/B/O.01.01/O.01.02/O.02. We selected 77 samples from an ABO genotype data set (n = 25 200) of serologically typed Swiss blood donors. The entire ABO gene was amplified in 2 overlapping long-range polymerase chain reactions (covering ∼23.6 kb) and sequenced by long-read Oxford Nanopore sequencing. For quality validation, 2 samples per ABO group were resequenced using Illumina and Pacific Biosciences technology. All 154 full-length ABO sequences were resolved as haplotypes. We observed novel, distinct sequence patterns for each ABO group. Most genetic diversity was found between, not within, ABO groups. Phylogenetic tree and haplotype network analyses highlighted distinct clades of each ABO group. Strikingly, our data uncovered 4 genetic variants putatively specific for ABO∗A1, for which direct diagnostic targets are currently lacking. We validated A1-diagnostic potential using whole-genome data (n = 4872) of a multiethnic cohort. Overall, our sequencing strategy proved powerful for producing high-quality ABO haplotypes and holds promise for generating similar collections for other blood groups. The publicly available collection of 154 haplotypes will serve as a valuable resource for molecular analyses of ABO, as well as studies about the function and evolutionary history of ABO.


Asunto(s)
Sistema del Grupo Sanguíneo ABO , Humanos , Alelos , Haplotipos , Sistema del Grupo Sanguíneo ABO/genética , Filogenia , Genotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA