Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Clin Chem Lab Med ; 62(1): 168-177, 2024 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-37678194

RESUMEN

OBJECTIVES: Cancer morbidity and mortality can be reduced if the cancer is detected early. Cell-free DNA (cfDNA) fragmentomics emerged as a novel epigenetic biomarker for early cancer detection, however, it is still at its infancy and requires technical improvement. We sought to apply a single-strand DNA sequencing technology, for measuring genetic and fragmentomic features of cfDNA and evaluate the performance in detecting multiple cancers. METHODS: Blood samples of 364 patients from six cancer types (colorectal, esophageal, gastric, liver, lung, and ovarian cancers) and 675 healthy individuals were included in this study. Circulating tumor DNA mutations, cfDNA fragmentomic features and a set of protein biomarkers were assayed. Sensitivity and specificity were reported by cancer types and stages. RESULTS: Circular Ligation Amplification and sequencing (CLAmp-seq), a single-strand DNA sequencing technology, yielded a population of ultra-short fragments (<100 bp) than double-strand DNA preparation protocols and reveals a more significant size difference between cancer and healthy cfDNA fragments (25.84 bp vs. 16.05 bp). Analysis of the subnucleosomal peaks in ultra-short cfDNA fragments indicates that these peaks are regulatory element "footprints" and correlates with gene expression and cancer stages. At 98 % specificity, a prediction model using ctDNA mutations alone showed an overall sensitivity of 46 %; sensitivity reaches 60 % when protein is added, sensitivity further increases to 66 % when fragmentomics is also integrated. More improvements observed for samples representing earlier cancer stages than later ones. CONCLUSIONS: These results suggest synergistic properties of protein, genetic and fragmentomics features in the identification of early-stage cancers.


Asunto(s)
Ácidos Nucleicos Libres de Células , ADN Tumoral Circulante , Neoplasias , Humanos , Detección Precoz del Cáncer , Mutación , ADN Tumoral Circulante/genética , Neoplasias/diagnóstico , Neoplasias/genética , Biomarcadores de Tumor/genética
2.
EMBO Mol Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164471

RESUMEN

While whole genome sequencing (WGS) of cell-free DNA (cfDNA) holds enormous promise for detection of molecular residual disease (MRD), its performance is limited by WGS error rate. Here we introduce AccuScan, an efficient cfDNA WGS technology that enables genome-wide error correction at single read-level, achieving an error rate of 4.2 × 10-7, which is about two orders of magnitude lower than a read-centric de-noising method. The application of AccuScan to MRD demonstrated analytical sensitivity down to 10-6 circulating variant allele frequency at 99% sample-level specificity. AccuScan showed 90% landmark sensitivity (within 6 weeks after surgery) and 100% specificity for predicting relapse in colorectal cancer. It also showed 67% sensitivity and 100% specificity in esophageal cancer using samples collected within one week after surgery. When AccuScan was applied to monitor immunotherapy in melanoma patients, the circulating tumor DNA (ctDNA) levels and dynamic profiles were consistent with clinical outcomes. Overall, AccuScan provides a highly accurate WGS solution for MRD detection, empowering ctDNA detection at parts per million range without requiring high sample input or personalized reagents.

3.
medRxiv ; 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38260271

RESUMEN

While whole genome sequencing (WGS) of cell-free DNA (cfDNA) holds enormous promise for molecular residual disease (MRD) detection, its performance is limited by WGS error rate. Here we introduce AccuScan, an efficient cfDNA WGS technology that enables genome-wide error correction at single read level, achieving an error rate of 4.2×10 -7 , which is about two orders of magnitude lower than a read-centric de-noising method. When applied to MRD detection, AccuScan demonstrated analytical sensitivity down to 10 -6 circulating tumor allele fraction at 99% sample level specificity. In colorectal cancer, AccuScan showed 90% landmark sensitivity for predicting relapse. It also showed robust MRD performance with esophageal cancer using samples collected as early as 1 week after surgery, and predictive value for immunotherapy monitoring with melanoma patients. Overall, AccuScan provides a highly accurate WGS solution for MRD, empowering circulating tumor DNA detection at parts per million range without high sample input nor personalized reagents. One Sentence Summary: AccuScan showed remarkable ultra-low limit of detection with a short turnaround time, low sample requirement and a simple workflow for MRD detection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA