Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Photosynth Res ; 152(2): 167-175, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35322325

RESUMEN

The oxygen-evolving complex (OEC) of photosystem II (PSII) cycles through redox intermediate states Si (i = 0-4) during the photochemical oxidation of water. The S2 state involves an equilibrium of two isomers including the low-spin S2 (LS-S2) state with its characteristic electron paramagnetic resonance (EPR) multiline signal centered at g = 2.0, and a high-spin S2 (HS-S2) state with its g = 4.1 EPR signal. The relative intensities of the two EPR signals change under experimental conditions that shift the HS-S2/LS-S2 state equilibrium. Here, we analyze the effect of glycerol on the relative stability of the LS-S2 and HS-S2 states when bound at the narrow channel of PSII, as reported in an X-ray crystal structure of cyanobacterial PSII. Our quantum mechanics/molecular mechanics (QM/MM) hybrid models of cyanobacterial PSII show that the glycerol molecule perturbs the hydrogen-bond network in the narrow channel, increasing the pKa of D1-Asp61 and stabilizing the LS-S2 state relative to the HS-S2 state. The reported results are consistent with the absence of the HS-S2 state EPR signal in native cyanobacterial PSII EPR spectra and suggest that the narrow water channel hydrogen-bond network regulates the relative stability of OEC catalytic intermediates during water oxidation.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Espectroscopía de Resonancia por Spin del Electrón , Glicerol , Hidrógeno , Oxidación-Reducción , Oxígeno , Agua
2.
Nature ; 491(7425): 608-12, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23135403

RESUMEN

Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.


Asunto(s)
Eritroblastos/metabolismo , Eritropoyesis , Hemo/biosíntesis , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas/metabolismo , Anemia Sideroblástica/genética , Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Animales , Modelos Animales de Enfermedad , Eritroblastos/citología , Ferroquelatasa/metabolismo , Prueba de Complementación Genética , Humanos , Concentración de Iones de Hidrógeno , Ratones , Mitocondrias/patología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteínas/genética , Pez Cebra/metabolismo , Proteína Inhibidora ATPasa
3.
Photosynth Res ; 134(2): 175-182, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28741056

RESUMEN

Photosystem II (PSII) of oxygenic photosynthetic organisms normally contains exclusively chlorophyll a (Chl a) as its major light-harvesting pigment. Chl a canonically consists of the chlorin headgroup with a 20-carbon, 4-isoprene unit, phytyl tail. We have examined the 1.9 Å crystal structure of PSII from thermophilic cyanobacteria reported by Shen and coworkers in 2012 (PDB accession of 3ARC/3WU2). A newly refined electron density map from this structure, presented here, reveals that some assignments of the cofactors may be different from those modeled in the 3ARC/3WU2 structure, including a specific Chl a that appears to have a truncated tail by one isoprene unit. We provide experimental evidence using high-performance liquid chromatography and mass spectrometry for a small population of Chl a esterified to a 15-carbon farnesyl tail in PSII of thermophilic cyanobacteria.


Asunto(s)
Clorofila/metabolismo , Cianobacterias/fisiología , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/química , Clorofila A , Transporte de Electrón , Oxígeno
4.
Biochemistry ; 50(12): 2213-22, 2011 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-21299233

RESUMEN

Proteolysis plays a key role in regulating the levels and activity of peptide hormones. Characterization of the proteolytic pathways that cleave peptide hormones is of basic interest and can, in some cases, spur the development of novel therapeutics. The lack, however, of an efficient approach to identify endogenous fragments of peptide hormones has hindered the elucidation of these proteolytic pathways. Here, we apply a mass spectrometry (MS) based peptidomics approach to characterize the intestinal fragments of peptide histidine isoleucine (PHI), a hormone that promotes glucose-stimulated insulin secretion (GSIS). Our approach reveals a proteolytic pathway in the intestine that truncates PHI at its C-terminus to produce a PHI fragment that is inactive in a GSIS assay, a result that provides a potential mechanism of PHI regulation in vivo. Differences between these in vivo peptidomics studies and in vitro lysate experiments, which showed N- and C-terminal processing of PHI, underscore the effectiveness of this approach to discover physiologically relevant proteolytic pathways. Moreover, integrating this peptidomics approach with bioassays (i.e., GSIS) provides a general strategy to reveal proteolytic pathways that may regulate the activity of peptide hormones.


Asunto(s)
Hormonas Peptídicas/metabolismo , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Unión Competitiva , Dipeptidil Peptidasa 4/metabolismo , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Hormonas Peptídicas/química , Péptido Hidrolasas/metabolismo , Péptido PHI/química , Péptido PHI/metabolismo , Extractos de Tejidos/metabolismo
5.
Cell Rep ; 10(4): 497-504, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25640178

RESUMEN

Strategies that simultaneously enhance the survival and glucose responsiveness of insulin-producing ß cells will greatly augment ß cell replacement therapies in type 1 diabetes (T1D). We show that genetic and pharmacologic mimetics of the phosphorylated BCL-2 homology 3 (BH3) domain of BAD impart ß-cell-autonomous protective effects in the face of stress stimuli relevant to ß cell demise in T1D. Importantly, these benefits translate into improved engraftment of donor islets in transplanted diabetic mice, increased ß cell viability in islet grafts, restoration of insulin release, and diabetes reversal. Survival of ß cells in this setting is not merely due to the inability of phospho-BAD to suppress prosurvival BCL-2 proteins but requires its activation of the glucose-metabolizing enzyme glucokinase. Thus, BAD phospho-BH3 mimetics may prove useful in the restoration of functional ß cell mass in diabetes.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Células Secretoras de Insulina/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Línea Celular , Supervivencia Celular/fisiología , Células Cultivadas , Glucoquinasa/metabolismo , Técnicas In Vitro , Ratones , Ratas
6.
Cell Metab ; 19(2): 272-84, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24506868

RESUMEN

The homeostatic balance of hepatic glucose utilization, storage, and production is exquisitely controlled by hormonal signals and hepatic carbon metabolism during fed and fasted states. How the liver senses extracellular glucose to cue glucose utilization versus production is not fully understood. We show that the physiologic balance of hepatic glycolysis and gluconeogenesis is regulated by Bcl-2-associated agonist of cell death (BAD), a protein with roles in apoptosis and metabolism. BAD deficiency reprograms hepatic substrate and energy metabolism toward diminished glycolysis, excess fatty acid oxidation, and exaggerated glucose production that escapes suppression by insulin. Genetic and biochemical evidence suggests that BAD's suppression of gluconeogenesis is actuated by phosphorylation of its BCL-2 homology (BH)-3 domain and subsequent activation of glucokinase. The physiologic relevance of these findings is evident from the ability of a BAD phosphomimic variant to counteract unrestrained gluconeogenesis and improve glycemia in leptin-resistant and high-fat diet models of diabetes and insulin resistance.


Asunto(s)
Metabolismo Energético/fisiología , Gluconeogénesis/fisiología , Hígado/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Metabolismo Energético/genética , Gluconeogénesis/genética , Ratones , Ratones Mutantes , Fosforilación , Proteína Letal Asociada a bcl/genética
7.
Neuron ; 74(4): 719-30, 2012 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-22632729

RESUMEN

Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses.


Asunto(s)
Metabolismo Energético/fisiología , Hipocampo/metabolismo , Canales KATP/metabolismo , Convulsiones/metabolismo , Proteína Letal Asociada a bcl/metabolismo , Animales , Apoptosis/fisiología , Astrocitos/metabolismo , Células Cultivadas , Electroencefalografía , Hipocampo/fisiopatología , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Consumo de Oxígeno/fisiología , Fosforilación , Convulsiones/inducido químicamente , Convulsiones/fisiopatología , Proteína Letal Asociada a bcl/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA