Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Water Resour Res ; 58(6): e2021WR030729, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35859620

RESUMEN

Usually, models describing flow and transport for sub-surface engineering processes at the Darcy-scale do not take into consideration the effects of pore-scale flow regimes and fluid connectivity on average flow functions. In this article, we investigate the impact of wettability on pore-scale flow regimes. We show that fluid connectivity at the pore scale has a significant impact on average flow kinetics and therefore its contribution should not be ignored. Immiscible two-phase flow simulations were performed in a two-dimensional model of a Berea sandstone rock for wettability conditions ranging from moderately water-wet to strongly oil-wet. The simulation results show that wettability has a strong impact on invading fluid phase connectivity, which subsequently influences flow transport resistance. The effect of invading-phase connectivity and ganglion dynamics (GD) on two-phase displacement kinetics was also investigated. It was found that invading phase connectivity decreases away from the neutrally wet (intermediate wet) state. This study provides evidence that GD accelerate fluid flow transport kinetics during immiscible displacement processes. Lastly, the impact of wettability on fluid displacement efficiency and residual saturations was investigated. Maximum displacement efficiency occurred at the neutrally wet state.

2.
Sensors (Basel) ; 21(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833567

RESUMEN

In situ measurements are highly desirable in many microfluidic applications because they enable real-time, local monitoring of physical and chemical parameters, providing valuable insight into microscopic events and processes that occur in microfluidic devices. Unfortunately, the manufacturing of microfluidic devices with integrated sensors can be time-consuming, expensive, and "know-how" demanding. In this article, we describe an easy-to-implement method developed to integrate various "off-the-shelf" fiber optic sensors within microfluidic devices. To demonstrate this, we used commercial pH and pressure sensors ("pH SensorPlugs" and "FOP-MIV", respectively), which were "reversibly" attached to a glass microfluidic device using custom 3D-printed connectors. The microfluidic device, which serves here as a demonstrator, incorporates a uniform porous structure and was manufactured using a picosecond pulsed laser. The sensors were attached to the inlet and outlet channels of the microfluidic pattern to perform simple experiments, the aim of which was to evaluate the performance of both the connectors and the sensors in a practical microfluidic environment. The bespoke connectors ensured robust and watertight connection, allowing the sensors to be safely disconnected if necessary, without damaging the microfluidic device. The pH SensorPlugs were tested with a pH 7.01 buffer solution. They measured the correct pH values with an accuracy of ±0.05 pH once sufficient contact between the injected fluid and the measuring element (optode) was established. In turn, the FOP-MIV sensors were used to measure local pressure in the inlet and outlet channels during injection and the steady flow of deionized water at different rates. These sensors were calibrated up to 140 mbar and provided pressure measurements with an uncertainty that was less than ±1.5 mbar. Readouts at a rate of 4 Hz allowed us to observe dynamic pressure changes in the device during the displacement of air by water. In the case of steady flow of water, the pressure difference between the two measuring points increased linearly with increasing flow rate, complying with Darcy's law for incompressible fluids. These data can be used to determine the permeability of the porous structure within the device.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Tecnología de Fibra Óptica
3.
Anal Chem ; 92(9): 6693-6701, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32233401

RESUMEN

Organ-on-chip (OOC) devices are miniaturized devices replacing animal models in drug discovery and toxicology studies. The majority of OOC devices are made from polydimethylsiloxane (PDMS), an elastomer widely used in microfluidic prototyping, but posing a number of challenges to experimentalists, including leaching of uncured oligomers and uncontrolled absorption of small compounds. Here we assess the suitability of polylactic acid (PLA) as a replacement material to PDMS for microfluidic cell culture and OOC applications. We changed the wettability of PLA substrates and demonstrated the functionalization method to be stable over a time period of at least 9 months. We successfully cultured human cells on PLA substrates and devices, without coating. We demonstrated that PLA does not absorb small molecules, is transparent (92% transparency), and has low autofluorescence. As a proof of concept of its manufacturability, biocompatibility, and transparency, we performed a cell tracking experiment of prostate cancer cells in a PLA device for advanced cell culture.

4.
Sensors (Basel) ; 20(14)2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32698501

RESUMEN

Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely "fluid flow in porous media", "flow in heterogeneous rocks and fractures", "reactive transport, solute and colloid transport", and finally "porous media characterization". In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.

5.
Opt Express ; 25(13): 15216-15230, 2017 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-28788951

RESUMEN

A customized UV nanosecond pulsed laser system has been developed for the fast generation of tamper-proof security markings on the surface of metals, such as stainless steel, nickel, brass, and nickel-chromium (Inconel) alloys. The markings in the form of reflective phase holographic structures are generated using a laser microsculpting process that involves laser-induced local melting and vaporization of the metal surface. The holographic structures are formed from an array of optically-smooth craters whose depth can be controlled with ± 25nm accuracy. In contrast to conventional security markings, e.g., engraved serial numbers, etched part numbers and embossed polymer holographic stickers, which are only attached to the metal products as an adhesive tape, the phase holographic structures are robust to local damage (e.g. scratches) and resistant to tampering because they are generated directly on the metal surface. This paper describes a novel laser-based process for security marking of high-value metal goods, investigates the optical performance of the holographic structures, and demonstrates their application to watches.

6.
Opt Express ; 24(2): 1447-62, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26832525

RESUMEN

A customized CO(2) laser micromachining system was used for the generation of phase holographic structures directly on the surface of fused silica (HPFS(®)7980 Corning) and Borofloat(®)33 (Schott AG) glass. This process used pulses of duration 10µs and nominal wavelength 10.59µm. The pulse energy delivered to the glass workpiece was controlled by an acousto-optic modulator. The laser-generated structures were optically smooth and crack free. We demonstrated their use as diffractive optical elements (DOEs), which could be exploited as anti-counterfeiting markings embedded into valuable glass-made components and products.

7.
Appl Opt ; 53(9): 1759-65, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24663451

RESUMEN

We demonstrate an application of a liquid-crystal-based spatial light modulator (LC-SLM) for the parallel generation of optically smooth structured surfaces on Borofloat 33 glass. In this work, the picosecond laser beam intensity profile of wavelength 515 nm is spatially altered by a LC-SLM, and then delivered to the workpiece in order to generate surface deformations whose shape corresponds to the image generated by the LC display. To ensure that localized melting occurs without ablation, the glass surface is covered by a thin layer of graphite prior to laser treatment to provide increased linear absorption of the laser light. After laser treatment the residual graphite layer is removed using methanol and the whole sample is annealed for 1 h at a temperature of 560 °C, making the laser-induced surface deformations optically smooth.

8.
Sci Rep ; 14(1): 2839, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310119

RESUMEN

Microfluidic systems with integrated sensors are ideal platforms to study and emulate processes such as complex multiphase flow and reactive transport in porous media, numerical modeling of bulk systems in medicine, and in engineering. Existing commercial optical fibre sensing systems used in integrated microfluidic devices are based on single-core fibres, limiting the spatial resolution in parameter measurements in such application scenarios. Here, we propose a multicore fibre-based pH system for in-situ pH mapping with tens of micrometer spatial resolution in microfluidic devices. The demonstration uses custom laser-manufactured glass microfluidic devices (called further micromodels) consisting of two round ports. The micromodels comprise two lintels for the injection of various pH buffers and an outlet. The two-port system facilitates the injection of various pH solutions using independent pressure pumps. The multicore fibre imaging system provides spatial information about the pH environment from the intensity distribution of fluorescence emission from the sensor attached to the fibre end facet, making use of the cores in the fibre as independent measurement channels. As proof-of-concept, we performed pH measurements in micromodels through obstacles (glass and rock beads), showing that the particle features can be clearly distinguishable from the intensity distribution from the fibre sensor.

9.
Appl Opt ; 51(26): 6352-60, 2012 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-22968274

RESUMEN

We report a new technique for the rapid fabrication of microstripe cylindrical and toroidal mirrors with a high ratio (>10) of the two principal radii of curvature (RoC(1)/RoC(2)), and demonstrate their effectiveness as mode-selecting resonator mirrors for high-power planar waveguide lasers. In this process, the larger radius of curvature (RoC(1)) is determined by the planar or cylindrical shape of the fused silica substrate selected for laser processing, whilst the other (RoC(2)) is produced by controlled CO(2) laser-induced vaporization of the glass. The narrow stripe mirror aperture is achieved by applying a set of partially overlapped laser scans, with the incident laser power, the number of laser scans, and their spacing being used to control the curvature produced by laser evaporation. In this work, a 1 mm diameter laser spot is used to produce grooves of cylindrical/toroidal shape with 240 µm width and 16 mm length. After high reflectance coating, these grooves are found to provide excellent mode selectivity as resonator mirrors for a 150 µm core Yb:YAG planar waveguide laser, producing high brightness output at more than 300 W. The results show clearly that the laser-generated microstripe mirrors can improve the optical performance of high-power planar waveguide lasers when applied in a low-loss mode-selective resonator configuration.

10.
Materials (Basel) ; 15(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057167

RESUMEN

In recent years, there has been an increased uptake for surface functionalization through the means of laser surface processing. The constant evolution of low-cost, easily automatable, and highly repeatable nanosecond fibre lasers has significantly aided this. In this paper, we present a laser surface-texturing technique to manufacture a surface with a tailored high static friction coefficient for application within driveshafts of large marine engines. The requirement in this application is not only a high friction coefficient, but a friction coefficient kept within a narrow range. This is obtained by using nanosecond-pulsed fibre lasers to generate a hexagonal pattern of craters on the surface. To provide a suitable friction coefficient, after laser processing the surface was hardened using a chromium-based hardening process, so that the textured surface would embed into its counterpart when the normal force was applied in the engine application. Using the combination of the laser texturing and surface hardening, it is possible to tailor the surface properties to achieve a static friction coefficient of ≥0.7 with ~3-4% relative standard deviation. The laser-textured and hardened parts were installed in driveshafts for ship testing. After successfully performing in 1500 h of operation, it is planned to adopt the solution into production.

11.
Appl Opt ; 49(11): 1997-2005, 2010 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-20389997

RESUMEN

We describe a promising approach to the processing of micro-optical components, where CO(2) laser irradiation in raster scan is used to generate localized surface melting of binary or multilevel structures on silica, fabricated by conventional reactive-ion etching. The technique is shown to provide well-controlled local smoothing of step features by viscous flow under surface tension forces, relaxing the scale length of etch steps controllably between 1 and 30 microm. Uniform treatment of extended areas is obtained by raster scanning with a power stabilized, Gaussian beam profile in the 0.5 to 1 mm diameter range. For step heights of 1 microm or less, the laser-induced relaxation is symmetric, giving softening of just the upper and lower corners at a threshold power of 4.7 W, extending to symmetric long scale relaxation at 7.9 W, with the upper limit set by the onset of significant vaporization. Some asymmetry of the relaxation is observed for 3 microm high steps. Also, undercut steps or troughs produced by photolithography and etching of a deep 64 level multistep surface are found to have a polarization-dependent distortion after laser smoothing. The laser reflow process may be useful for improving the diffraction efficiency by suppressing high orders in binary diffractive optical elements, or for converting multilevel etched structures in fused silica into smoothed refractive surfaces in, for example, custom microlens arrays.

12.
Sci Rep ; 9(1): 20215, 2019 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882878

RESUMEN

Conventional manufacturing of glass microfluidic devices is a complex, multi-step process that involves a combination of different fabrication techniques, typically photolithography, chemical/dry etching and thermal/anodic bonding. As a result, the process is time-consuming and expensive, in particular when developing microfluidic prototypes or even manufacturing them in low quantity. This report describes a fabrication technique in which a picosecond pulsed laser system is the only tool required to manufacture a microfluidic device from transparent glass substrates. The laser system is used for the generation of microfluidic patterns directly on glass, the drilling of inlet/outlet ports in glass covers, and the bonding of two glass plates together in order to enclose the laser-generated patterns from the top. This method enables the manufacturing of a fully-functional microfluidic device in a few hours, without using any projection masks, dangerous chemicals, and additional expensive tools, e.g., a mask writer or bonding machine. The method allows the fabrication of various types of microfluidic devices, e.g., Hele-Shaw cells and microfluidics comprising complex patterns resembling up-scaled cross-sections of realistic rock samples, suitable for the investigation of CO2 storage, water remediation and hydrocarbon recovery processes. The method also provides a route for embedding small 3D objects inside these devices.

13.
Micromachines (Basel) ; 9(8)2018 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-30424342

RESUMEN

Conventional manufacturing of microfluidic devices from glass substrates is a complex, multi-step process that involves different fabrication techniques and tools. Hence, it is time-consuming and expensive, in particular for the prototyping of microfluidic devices in low quantities. This article describes a laser-based process that enables the rapid manufacturing of enclosed micro-structures by laser micromachining and microwelding of two 1.1-mm-thick borosilicate glass plates. The fabrication process was carried out only with a picosecond laser (Trumpf TruMicro 5×50) that was used for: (a) the generation of microfluidic patterns on glass, (b) the drilling of inlet/outlet ports into the material, and (c) the bonding of two glass plates together in order to enclose the laser-generated microstructures. Using this manufacturing approach, a fully-functional microfluidic device can be fabricated in less than two hours. Initial fluid flow experiments proved that the laser-generated microstructures are completely sealed; thus, they show a potential use in many industrial and scientific areas. This includes geological and petroleum engineering research, where such microfluidic devices can be used to investigate single-phase and multi-phase flow of various fluids (such as brine, oil, and CO2) in porous media.

14.
Rev Sci Instrum ; 85(2): 024502, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24593375

RESUMEN

A prototype of a scalable and potentially low-cost stacked array piezoelectric deformable mirror (SA-PDM) with 35 active elements is presented in this paper. This prototype is characterized by a 2 µm maximum actuator stroke, a 1.4 µm mirror sag (measured for a 14 mm × 14 mm area of the unpowered SA-PDM), and a ±200 nm hysteresis error. The initial proof of concept experiments described here show that this mirror can be successfully used for shaping a high power laser beam in order to improve laser machining performance. Various beam shapes have been obtained with the SA-PDM and examples of laser machining with the shaped beams are presented.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA