Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Brain Mapp ; 43(12): 3792-3808, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35475569

RESUMEN

The resting-state human brain is a dynamic system that shows frequency-dependent characteristics. Recent studies demonstrate that coactivation pattern (CAP) analysis can identify recurring brain states with similar coactivation configurations. However, it is unclear whether and how CAPs depend on the frequency bands. The current study investigated the spatial and temporal characteristics of CAPs in the four frequency sub-bands from slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), to slow-2 (0.198-0.25 Hz), in addition to the typical low-frequency range (0.01-0.08 Hz). In the healthy subjects, six CAP states were obtained at each frequency band in line with our prior study. Similar spatial patterns with the typical range were observed in slow-5, 4, and 3, but not in slow-2. While the frequency increased, all CAP states displayed shorter persistence, which caused more between-state transitions. Specifically, from slow-5 to slow-4, the coactivation not only changed significantly in distributed cortical networks, but also increased in the basal ganglia as well as the amygdala. Schizophrenia patients showed significant alteration in the persistence of CAPs of slow-5. Using leave-one-pair-out, hold-out and resampling validations, the highest classification accuracy (84%) was achieved by slow-4 among different frequency bands. In conclusion, our findings provide novel information about spatial and temporal characteristics of CAP states at different frequency bands, which contributes to a better understanding of the frequency aspect of biomarkers for schizophrenia and other disorders.


Asunto(s)
Imagen por Resonancia Magnética , Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Cabeza , Humanos , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen
2.
Conscious Cogn ; 84: 102993, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32771954

RESUMEN

Slow cortical potentials (SCPs) have been proposed to be essential for the formation of conscious experience. To examine their temporal characteristics, we recorded electroencephalography during a visual backward-masking task, which required participants to localize the missing part of a target stimulus. A subsequent confidence rating was used as a proxy for the target's access to consciousness. Event-related potentials (ERPs) of all correct trials were determined relative to a brief period immediately before the target and then compared among consciousness levels. In an interval ranging from 2 s prior to target presentation up to this period, a negative relationship between slowly fluctuating ERP values and the level of consciousness became evident. After target presentation, high conscious awareness was characterized by an enhanced visual awareness negativity, an increased P3 component, and associated positive SCPs. Together, these findings add new evidence to the proposed role of SCPs in the emergence of visual consciousness.


Asunto(s)
Concienciación/fisiología , Estado de Conciencia/fisiología , Potenciales Evocados/fisiología , Percepción Visual/fisiología , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Enmascaramiento Perceptual/fisiología , Adulto Joven
3.
J Psychiatry Neurosci ; 44(6): 395-406, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30964615

RESUMEN

Background: Obsessive­compulsive disorder (OCD) is characterized by anxiety-provoking, obsessive thoughts. Patients usually react to these thoughts with repetitive behaviours that reduce anxiety and are perceived as rewarding. Hence, reward plays a major role in the psychopathology of OCD. Previous studies showed altered activation in frontostriatal networks, among others, in association with the processing of reward in patients with OCD. Potential alterations in connectivity within these networks have, however, barely been explored. Methods: We investigated a sample of patients with OCD and healthy controls using functional MRI and a reward learning task presented in an event-related design. Dynamic causal modelling (DCM) was used to estimate effective connectivity. Results: Our sample included 37 patients with OCD and 39 healthy controls. Analyses of task-related changes in connectivity showed a significantly altered effective connectivity between the ventromedial prefrontal cortex (vmPFC) and the orbitofrontal cortex (OFC), among others, both in terms of endogenous connectivity as well as modulatory effects under positive feedback. Clinical measures of compulsion correlated with the effect of feedback input on visual sensory areas. Limitations: The reported alterations should be interpreted within the context of the task and the a priori­defined network considered in the analysis. Conclusion: This disrupted connectivity in parts of the default mode network and the frontostriatal network may indicate increased rumination and self-related processing impairing the responsiveness toward external rewards. This, in turn, may underlie the general urge for reinforcement accompanying compulsive behaviours.


Asunto(s)
Encéfalo/diagnóstico por imagen , Trastorno Obsesivo Compulsivo/diagnóstico por imagen , Recompensa , Adulto , Encéfalo/patología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Femenino , Neuroimagen Funcional , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Neostriado/diagnóstico por imagen , Neostriado/patología , Neostriado/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Trastorno Obsesivo Compulsivo/fisiopatología , Tamaño de los Órganos , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología , Corteza Prefrontal/fisiopatología , Putamen/diagnóstico por imagen , Putamen/patología , Putamen/fisiopatología , Corteza Visual/diagnóstico por imagen , Corteza Visual/patología , Corteza Visual/fisiopatología , Adulto Joven
4.
Eur Radiol ; 29(7): 3533-3542, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30903339

RESUMEN

OBJECTIVE: To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults. METHODS: We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4 years, 8 females; 40 VP/VLBWs, mean age 26.6 years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves. RESULTS: Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p < 0.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p = 0.04) and deformed lateral ventricles (p = 0.03) and tendency towards more "dirty" white matter (p = 0.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect. CONCLUSION: Enlarged and deformed lateral ventricles, thinner corpus callosum, and "dirty" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations. KEY POINTS: • Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. • In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and "dirty" white matter are visible on MRI, ask for prematurity before considering other diagnoses. • Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy.


Asunto(s)
Encefalopatías/diagnóstico , Encéfalo/patología , Recién Nacido de muy Bajo Peso , Imagen por Resonancia Magnética/métodos , Nacimiento Prematuro , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Estudios Prospectivos , Reproducibilidad de los Resultados
5.
Cereb Cortex ; 28(9): 3082-3094, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-28981646

RESUMEN

Cognitive emotion regulation (CER) enables humans to flexibly modulate their emotions. While local theories of CER neurobiology suggest interactions between specialized local brain circuits underlying CER, e.g., in subparts of amygdala and medial prefrontal cortices (mPFC), global theories hypothesize global interaction increases among larger functional brain modules comprising local circuits. We tested the global CER hypothesis using graph-based whole-brain network analysis of functional MRI data during aversive emotional processing with and without CER. During CER, global between-module interaction across stable functional network modules increased. Global interaction increase was particularly driven by subregions of amygdala and cuneus-nodes of highest nodal participation-that overlapped with CER-specific local activations, and by mPFC and posterior cingulate as relevant connector hubs. Results provide evidence for the global nature of human CER, complementing functional specialization of embedded local brain circuits during successful CER.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Emociones/fisiología , Red Nerviosa/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Adulto Joven
6.
Neuroimage ; 147: 650-657, 2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28040541

RESUMEN

Cognitive emotion regulation (CER) is a critical human ability to face aversive emotional stimuli in a flexible way, via recruitment of specific prefrontal brain circuits. Animal research reveals a central role of ventral striatum in emotional behavior, for both aversive conditioning, with striatum signaling aversive prediction errors (aPE), and for integrating competing influences of distinct striatal inputs from regions such as the prefrontal cortex (PFC), amygdala, hippocampus and ventral tegmental area (VTA). Translating these ventral striatal findings from animal research to human CER, we hypothesized that successful CER would affect the balance of competing influences of striatal afferents on striatal aPE signals, in a way favoring PFC as opposed to 'subcortical' (i.e., non-isocortical) striatal inputs. Using aversive Pavlovian conditioning with and without CER during fMRI, we found that during CER, superior regulators indeed reduced the modulatory impact of 'subcortical' striatal afferents (hippocampus, amygdala and VTA) on ventral striatal aPE signals, while keeping the PFC impact intact. In contrast, inferior regulators showed an opposite pattern. Our results demonstrate that ventral striatal aPE signals and associated competing modulatory inputs are critical mechanisms underlying successful cognitive regulation of aversive emotions in humans.


Asunto(s)
Amígdala del Cerebelo/fisiología , Mapeo Encefálico/métodos , Emociones/fisiología , Función Ejecutiva/fisiología , Hipocampo/fisiología , Corteza Prefrontal/fisiología , Autocontrol , Estriado Ventral/fisiología , Adulto , Amígdala del Cerebelo/diagnóstico por imagen , Condicionamiento Clásico/fisiología , Femenino , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Estriado Ventral/diagnóstico por imagen , Adulto Joven
7.
Neuroimage ; 150: 68-76, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28188917

RESUMEN

Preterm birth is associated with an increased risk for lasting changes in both the cortico-thalamic system and attention; however, the link between cortico-thalamic and attention changes is as yet little understood. In preterm newborns, cortico-cortical and cortico-thalamic structural connectivity are distinctively altered, with increased local clustering for cortico-cortical and decreased integrity for cortico-thalamic connectivity. In preterm-born adults, among the various attention functions, visual short-term memory (vSTM) capacity is selectively impaired. We hypothesized distinct associations between vSTM capacity and the structural integrity of cortico-thalamic and cortico-cortical connections, respectively, in preterm-born adults. A whole-report paradigm of briefly presented letter arrays based on the computationally formalized Theory of Visual Attention (TVA) was used to quantify parameter vSTM capacity in 26 preterm- and 21 full-term-born adults. Fractional anisotropy (FA) of posterior thalamic radiations and the splenium of the corpus callosum obtained by diffusion tensor imaging were analyzed by tract-based spatial statistics and used as proxies for cortico-thalamic and cortico-cortical structural connectivity. The relationship between vSTM capacity and cortico-thalamic and cortico-cortical connectivity, respectively, was significantly modified by prematurity. In full-term-born adults, the higher FA in the right posterior thalamic radiation the higher vSTM capacity; in preterm-born adults this FA-vSTM-relationship was inversed. In the splenium, higher FA was correlated with higher vSTM capacity in preterm-born adults, whereas no significant relationship was evident in full-term-born adults. These results indicate distinct associations between cortico-thalamic and cortico-cortical integrity and vSTM capacity in preterm-and full-term-born adults. Data suggest compensatory cortico-cortical fiber re-organization for attention deficits after preterm delivery.


Asunto(s)
Cuerpo Calloso/patología , Trastornos de la Memoria/patología , Vías Nerviosas/patología , Nacimiento Prematuro/patología , Tálamo/patología , Adulto , Atención/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Estudios Longitudinales , Masculino , Trastornos de la Memoria/etiología , Memoria a Corto Plazo/fisiología , Embarazo , Percepción Visual/fisiología
8.
Neuroimage ; 134: 305-313, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27033686

RESUMEN

Mindfulness practice is beneficial for emotion regulation; however, the neural mechanisms underlying this effect are poorly understood. The current study focuses on effects of attention-to-breath (ATB) as a basic mindfulness practice on aversive emotions at behavioral and brain levels. A key finding across different emotion regulation strategies is the modulation of amygdala and prefrontal activity. It is unclear how ATB relevant brain areas in the prefrontal cortex integrate with amygdala activation during emotional stimulation. We proposed that, during emotional stimulation, ATB down-regulates activation in the amygdala and increases its integration with prefrontal regions. To address this hypothesis, 26 healthy controls were trained in mindfulness-based attention-to-breath meditation for two weeks and then stimulated with aversive pictures during both attention-to-breath and passive viewing while undergoing fMRI. Data were controlled for breathing frequency. Results indicate that (1) ATB was effective in regulating aversive emotions. (2) Left dorso-medial prefrontal cortex was associated with ATB in general. (3) A fronto-parietal network was additionally recruited during emotional stimulation. (4) ATB down regulated amygdala activation and increased amygdala-prefrontal integration, with such increased integration being associated with mindfulness ability. Results suggest amygdala-dorsal prefrontal cortex integration as a potential neural pathway of emotion regulation by mindfulness practice.


Asunto(s)
Amígdala del Cerebelo/fisiología , Atención/fisiología , Emociones/fisiología , Atención Plena/métodos , Mecánica Respiratoria/fisiología , Adulto , Conectoma/métodos , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología
9.
Neuroimage ; 134: 270-280, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27095057

RESUMEN

Socially-induced cognitive emotion regulation (Social-Reg) is crucial for emotional well-being and social functioning; however, its brain mechanisms remain poorly understood. Given that both social cognition and cognitive emotion regulation engage key regions of the default-mode network (DMN), we hypothesized that Social-Reg would rely on the DMN, and that its effectiveness would be associated with social functioning. During functional MRI, negative emotions were elicited by pictures, and - via short instructions - a psychotherapist either down-regulated participants' emotions by employing reappraisal (Reg), or asked them to simply look at the pictures (Look). Adult Attachment Scale was used to measure social functioning. Contrasting Reg versus Look, aversive emotions were successfully reduced during Social-Reg, with increased activations in the prefrontal and parietal cortices, precuneus and the left temporo-parietal junction. These activations covered key nodes of the DMN and were associated with Social-Reg success. Furthermore, participants' attachment security was positively correlated with both Social-Reg success and orbitofrontal cortex involvement during Social-Reg. In addition, specificity of the neural correlates of Social-Reg was confirmed by comparisons with participants' DMN activity at rest and their brain activations during a typical emotional self-regulation task based on the same experimental paradigm without a psychotherapist. Our results provide first evidence for the specific involvement of the DMN in Social-Reg, and the association of Social-Reg with individual differences in attachment security. The findings suggest that DMN dysfunction, found in many neuropsychiatric disorders, may impair the ability to benefit from Social-Reg.


Asunto(s)
Corteza Cerebral/fisiología , Cognición/fisiología , Ajuste Emocional/fisiología , Emociones/fisiología , Retroalimentación Fisiológica/fisiología , Relaciones Interpersonales , Red Nerviosa/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Conducta Social
10.
Hum Brain Mapp ; 37(1): 289-99, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26487037

RESUMEN

White matter (WM) injury, either visible on conventional magnetic resonance images (MRI) or measurable by diffusion tensor imaging (DTI), is frequent in preterm born individuals and often affects the corticospinal tract (CST). The relation between visible and invisible white mater alterations in the reconstructed CST of preterm subjects has so far been studied in infants, children and up to adolescence. Therefore, we probabilistically tracked the CST in 53 term-born and 56 very preterm and/or low birth weight (VP/VLBW, < 32 weeks of gestation and/or birth weight < 1,500 g) adults (mean age 26 years) and compared their DTI parameters (axial, radial, mean diffusivity--AD, RD, MD, fractional anisotropy--FA) in the whole CST and slice-wise along the CST. Additionally, we used the automatic, tract-based-spatial-statistics (TBSS) as an alternative to tractography. We compared control and VP/VLBW and subgroups with and without CST WM lesions visible on conventional MRI. Compared to controls, VP/VLBW subjects had significantly higher diffusivity (AD, RD, MD) in the whole CST, slice-wise along the CST, and in multiple regions along the TBSS skeleton. VP/VLBW subjects also had significantly lower (TBSS) and higher (tractography) FA in regions along the CST, but no different mean FA in the tracked CST as a whole. Diffusion changes were weaker, but remained significant for both, tractography and TBSS, when excluding subjects with visible CST lesions. Chronic CST injury persists in VP/VLBW adults even in the absence of visible WM lesions, indicating long-term structural WM changes induced by premature birth.


Asunto(s)
Recién Nacido de muy Bajo Peso , Nacimiento Prematuro/patología , Tractos Piramidales/patología , Sustancia Blanca/patología , Adulto , Análisis de Varianza , Mapeo Encefálico , Imagen de Difusión Tensora , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Estudios Longitudinales , Masculino , Probabilidad
11.
Cereb Cortex ; 25(11): 4135-45, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24935776

RESUMEN

Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM.


Asunto(s)
Mapeo Encefálico , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Sustancia Gris/patología , Vías Nerviosas/patología , Nacimiento Prematuro/patología , Adolescente , Adulto , Niño , Preescolar , Femenino , Sustancia Gris/crecimiento & desarrollo , Humanos , Procesamiento de Imagen Asistido por Computador , Lactante , Recién Nacido , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Adulto Joven
12.
Cereb Cortex ; 25(12): 4678-88, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24996404

RESUMEN

Amyloid-ß pathology (Aß) and impaired cognition characterize Alzheimer's disease (AD); however, neural mechanisms that link Aß-pathology with impaired cognition are incompletely understood. Large-scale intrinsic connectivity networks (ICNs) are potential candidates for this link: Aß-pathology affects specific networks in early AD, these networks show disrupted connectivity, and they process specific cognitive functions impaired in AD, like memory or attention. We hypothesized that, in AD, regional changes of ICNs, which persist across rest- and cognitive task-states, might link Aß-pathology with impaired cognition via impaired intrinsic connectivity. Pittsburgh compound B (PiB)-positron emission tomography reflecting in vivo Aß-pathology, resting-state fMRI, task-fMRI, and cognitive testing were used in patients with prodromal AD and healthy controls. In patients, default mode network's (DMN) functional connectivity (FC) was reduced in the medial parietal cortex during rest relative to healthy controls, relatively increased in the same region during an attention-demanding task, and associated with patients' cognitive impairment. Local PiB-uptake correlated negatively with DMN connectivity. Importantly, corresponding results were found for the right lateral parietal region of an attentional network. Finally, structural equation modeling confirmed a direct influence of DMN resting-state FC on the association between Aß-pathology and cognitive impairment. Data provide evidence that disrupted intrinsic network connectivity links Aß-pathology with cognitive impairment in early AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Cognición/fisiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/psicología , Anciano , Anciano de 80 o más Años , Compuestos de Anilina , Atención/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Tiazoles
13.
J Neurosci ; 34(39): 13183-94, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25253863

RESUMEN

Human tool use is complex, and underlying neural mechanisms seem to be widely distributed across several brain systems; however, neuroimaging studies of actual tool use are rare because of experimental challenges hindering detailed analysis within one acting subject. We developed a "Tool-Carousel" that enabled us to test actual manipulation of different objects during fMRI and investigate the planning and execution of goal-directed actions. Particularly, we focused on the effects of three factors on object manipulations: the type of object manipulated, the type of manipulation, and the hand to be used. The main focus lay on the question of how complex object use compared with unspecific actions are processed and especially how such representations interact with the knowledge about the object in the action-related dorsal stream. We found that object manipulations with both right and left hand recruit a common network strongly lateralized to the left hemisphere especially during planning but also action execution. Specifically, while activity in the ventral stream was involved in processing semantic information and object properties, a dorso-dorsal pathway (i.e., superior occipital gyrus, superior parietal lobule, and dorsal premotor area) was relevant for monitoring the online control of objects and also a ventro-dorsal pathway (i.e., middle occipital gyrus, inferior parietal lobule, and ventral premotor area) was specifically involved in processing known object manipulations, such as tool use. Data further indicate an interaction of ventral stream areas, such as middle temporal gyrus and lateral occipital complex, with both dorsal pathways. These results provide evidence for left-lateralized occipito-temporo-parieto-frontal network of everyday tool use, which may help to characterize specific deficits in patients suffering from apraxia.


Asunto(s)
Mapeo Encefálico , Encéfalo/fisiología , Lateralidad Funcional , Destreza Motora , Adulto , Femenino , Mano/inervación , Mano/fisiología , Humanos , Imagen por Resonancia Magnética , Masculino
14.
Neuroimage ; 123: 138-48, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26306990

RESUMEN

Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways.


Asunto(s)
Cognición/fisiología , Condicionamiento Clásico/fisiología , Cuerpo Estriado/fisiología , Emociones/fisiología , Aprendizaje/fisiología , Área Tegmental Ventral/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Adulto Joven
15.
Neuroimage ; 107: 95-106, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25498391

RESUMEN

Although pronounced and lasting deficits in selective attention have been observed for preterm born individuals it is unknown which specific attentional sub-mechanisms are affected and how they relate to brain networks. We used the computationally specified 'Theory of Visual Attention' together with whole- and partial-report paradigms to compare attentional sub-mechanisms of pre- (n=33) and full-term (n=32) born adults. Resting-state fMRI was used to evaluate both between-group differences and inter-individual variance in changed functional connectivity of intrinsic brain networks relevant for visual attention. In preterm born adults, we found specific impairments of visual short-term memory (vSTM) storage capacity while other sub-mechanisms such as processing speed or attentional weighting were unchanged. Furthermore, changed functional connectivity was found in unimodal visual and supramodal attention-related intrinsic networks. Among preterm born adults, the individual pattern of changed connectivity in occipital and parietal cortices was systematically associated with vSTM in such a way that the more distinct the connectivity differences, the better the preterm adults' storage capacity. These findings provide first evidence for selectively changed attentional sub-mechanisms in preterm born adults and their relation to altered intrinsic brain networks. In particular, data suggest that cortical changes in intrinsic functional connectivity may compensate adverse developmental consequences of prematurity on visual short-term storage capacity.


Asunto(s)
Atención/fisiología , Recien Nacido Prematuro/fisiología , Red Nerviosa/fisiología , Percepción Visual/fisiología , Adulto , Cognición/fisiología , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Memoria a Corto Plazo/fisiología , Estimulación Luminosa , Análisis de Componente Principal , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología
16.
Hum Brain Mapp ; 36(3): 1121-37, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25413496

RESUMEN

Premature birth is associated with an increased risk of cognitive performance deficits that are dependent on working memory (WM) load in childhood. Less clear is whether preterm-born adults show similar WM impairments, or develop compensatory brain mechanisms that help to overcome prematurity-related functional deficits, for example, by a workload-dependent over-recruitment of WM-typical areas, and/or engagement of alternative brain networks. In this functional magnetic resonance imaging study, 73 adults born very preterm and/or with very low birth weight (VP/VLBW) and 73 term-born controls (CON, mean age: 26.5 years) performed a verbal N-Back paradigm with varying workload (0-back, 1-back, 2-back). Generally, both groups showed similar performance accuracy and task-typical patterns of brain activations (especially in fronto-cingulo-parietal, thalamic, and cerebellar areas) and deactivations (especially in mesial frontal and parietal aspects of the default mode network [DMN]). However, VP/VLBW adults showed significantly stronger deactivations (P < 0.05, cluster-level corrected) than CON in posterior DMN regions, including right ventral precuneus, and right parahippocampal areas (with adjacent cerebellar areas), which were specific for the most demanding 2-back condition. Consistent with a workload-dependent effect, VP/VLBW adults with stronger deactivations (1-back > 2-back) in the parahippocampal/cerebellar cluster also presented a greater slowing of response latencies with increasing WM load (2-back > 1-back), indicative of higher effort. In conclusion, VP/VLBW adults recruited similar anatomical networks as controls during N-back performance, but showed an enhanced suppression of posterior DMN regions during higher workload, which may reflect a temporary suppression of stimulus-independent thoughts that helps to maintain adequate task performance with increasing attentional demands.


Asunto(s)
Encéfalo/fisiopatología , Neuroimagen Funcional/métodos , Recien Nacido con Peso al Nacer Extremadamente Bajo/fisiología , Recien Nacido Extremadamente Prematuro/fisiología , Memoria a Corto Plazo/fisiología , Red Nerviosa/fisiopatología , Desempeño Psicomotor/fisiología , Adulto , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética , Masculino
17.
Brain ; 137(Pt 2): 598-609, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24163276

RESUMEN

In major depressive disorder, depressive episodes reoccur in ∼60% of cases; however, neural mechanisms of depressive relapse are poorly understood. Depressive episodes are characterized by aberrant topology of the brain's intrinsic functional connectivity network, and the number of episodes is one of the most important predictors for depressive relapse. In this study we hypothesized that specific changes of the topology of intrinsic connectivity interact with the course of episodes in recurrent depressive disorder. To address this hypothesis, we investigated which changes of connectivity topology are associated with the number of episodes in patients, independently of current symptoms and disease duration. Fifty subjects were recruited including 25 depressive patients (two to 10 episodes) and 25 gender- and age-matched control subjects. Resting-state functional magnetic resonance imaging, Harvard-Oxford brain atlas, wavelet-transformation of atlas-shaped regional time-series, and their pairwise Pearson's correlation were used to define individual connectivity matrices. Matrices were analysed by graph-based methods, resulting in outcome measures that were used as surrogates of intrinsic network topology. Topological scores were subsequently compared across groups, and, for patients only, related with the number of depressive episodes and current symptoms by partial correlation analysis. Concerning the whole brain connectivity network of patients, small-world topology was preserved but global efficiency was reduced and global betweenness-centrality increased. Aberrant nodal efficiency and centrality of regional connectivity was found in the dorsal striatum, inferior frontal and orbitofrontal cortex as well as in the occipital and somatosensory cortex. Inferior frontal changes were associated with current symptoms, whereas aberrant right putamen network topology was associated with the number of episodes. Results were controlled for effects of total grey matter volume, medication, and total disease duration. This finding provides first evidence that in major depressive disorder aberrant topology of the right putamen's intrinsic connectivity pattern is associated with the course of depressive episodes, independently of current symptoms, medication status and disease duration. Data suggest that the reorganization of striatal connectivity may interact with the course of episodes in depression thereby contributing to depressive relapse risk.


Asunto(s)
Mapeo Encefálico/métodos , Cuerpo Estriado/patología , Trastorno Depresivo Mayor/patología , Red Nerviosa/patología , Adulto , Trastorno Depresivo Mayor/psicología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/patología , Factores de Tiempo
18.
Brain ; 137(Pt 7): 2052-64, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24771519

RESUMEN

There is striking overlap between the spatial distribution of amyloid-ß pathology in patients with Alzheimer's disease and the spatial distribution of high intrinsic functional connectivity in healthy persons. This overlap suggests a mechanistic link between amyloid-ß and intrinsic connectivity, and indeed there is evidence in patients for the detrimental effects of amyloid-ß plaque accumulation on intrinsic connectivity in areas of high connectivity in heteromodal hubs, and particularly in the default mode network. However, the observed spatial extent of amyloid-ß exceeds these tightly circumscribed areas, suggesting that previous studies may have underestimated the negative impact of amyloid-ß on intrinsic connectivity. We hypothesized that the known positive baseline correlation between patterns of amyloid-ß and intrinsic connectivity may mask the larger extent of the negative effects of amyloid-ß on connectivity. Crucially, a test of this hypothesis requires the within-patient comparison of intrinsic connectivity and amyloid-ß distributions. Here we compared spatial patterns of amyloid-ß-plaques (measured by Pittsburgh compound B positron emission tomography) and intrinsic functional connectivity (measured by resting-state functional magnetic resonance imaging) in patients with prodromal Alzheimer's disease via spatial correlations in intrinsic networks covering fronto-parietal heteromodal cortices. At the global network level, we found that amyloid-ß and intrinsic connectivity patterns were positively correlated in the default mode and several fronto-parietal attention networks, confirming that amyloid-ß aggregates in areas of high intrinsic connectivity on a within-network basis. Further, we saw an internetwork gradient of the magnitude of correlation that depended on network plaque-load. After accounting for this globally positive correlation, local amyloid-ß-plaque concentration in regions of high connectivity co-varied negatively with intrinsic connectivity, indicating that amyloid-ß pathology adversely reduces connectivity anywhere in an affected network as a function of local amyloid-ß-plaque concentration. The local negative association between amyloid-ß and intrinsic connectivity was much more pronounced than conventional group comparisons of intrinsic connectivity would suggest. Our findings indicate that the negative impact of amyloid-ß on intrinsic connectivity in heteromodal networks is underestimated by conventional analyses. Moreover, our results provide first within-patient evidence for correspondent patterns of amyloid-ß and intrinsic connectivity, with the distribution of amyloid-ß pathology following functional connectivity gradients within and across intrinsic networks.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/patología , Vías Nerviosas/patología , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Pruebas Neuropsicológicas , Placa Amiloide/metabolismo , Placa Amiloide/patología , Tomografía de Emisión de Positrones , Tiazoles
19.
Alzheimers Dement ; 11(5): 475-84, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25043909

RESUMEN

BACKGROUND: The hippocampus (HP) is part of the default mode network (DMN), and both are key targets of Alzheimer's disease (AD). Because of widespread network degeneration, it has been suggested that increasing HP disconnection from the DMN may lead to progressive disinhibition of intra-HP synchronized activity. METHODS: To analyze HP local (i.e., within HP) and global (i.e., within DMN) intrinsic functional connectivity (local/global intrinsic functional connectivity [iFC]), healthy controls and patients with mild cognitive impairment and AD dementia were assessed by spatial high and normal resolution resting-state functional magnetic resonance imaging. RESULTS: Although patients' parietal local-iFC was reduced and positively correlated with reduced global-iFC within the DMN, HP local connectivity was progressively increased and negatively correlated with HP decreased global connectivity. Increased intra-HP connectivity was associated with impaired memory. CONCLUSION: Our result demonstrates a link between increased local and reduced global hippocampal connectivity in AD. Increased intra-HP synchrony may contribute to distinct symptoms such as memory impairment or more speculatively epileptic seizure.


Asunto(s)
Enfermedad de Alzheimer/patología , Hipocampo/patología , Red Nerviosa/patología , Vías Nerviosas/patología , Anciano , Anciano de 80 o más Años , Análisis de Varianza , Femenino , Hipocampo/irrigación sanguínea , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/irrigación sanguínea , Vías Nerviosas/irrigación sanguínea , Examen Neurológico , Oxígeno/sangre , Escalas de Valoración Psiquiátrica
20.
Hum Brain Mapp ; 35(3): 954-63, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23307487

RESUMEN

Using functional neuroimaging techniques two aspects of functional integration in the human brain have been investigated, functional connectivity and effective connectivity. In this study we examined both connectivity types in parallel within an executive attention network during rest and while performing an attention task. We analyzed the predictive value of resting-state functional connectivity on task-induced effective connectivity in patients with prodromal Alzheimer's disease (AD) and healthy elderly. We found that in healthy elderly, functional connectivity was a significant predictor for effective connectivity, however, it was frequency-specific. Effective top-down connectivity emerging from prefrontal areas was related with higher frequencies of functional connectivity (e.g., 0.08-0.15 Hz), in contrast to effective bottom-up connectivity going to prefrontal areas, which was related to lower frequencies of functional connectivity (e.g., 0.001-0.03 Hz). In patients, the prediction of effective connectivity by functional connectivity was disturbed. We conclude that functional connectivity and effective connectivity are interrelated in healthy brains but this relationship is aberrant in very early AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Disfunción Cognitiva/fisiopatología , Conectoma/métodos , Red Nerviosa/fisiopatología , Corteza Prefrontal/fisiopatología , Anciano , Envejecimiento/fisiología , Antígenos Virales , Atención/fisiología , Conectoma/instrumentación , Progresión de la Enfermedad , Función Ejecutiva/fisiología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Síntomas Prodrómicos , Pronóstico , Desempeño Psicomotor/fisiología , Descanso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA