Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Virol ; 87(2): 798-806, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23115281

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) infection is correlated with three human malignancies and can establish lifelong latent infection in multiple cell types within its human host. In order to establish and maintain infection, KSHV utilizes multiple mechanisms to evade the host immune response. One such mechanism is the expression of a family of genes with homology to cellular interferon (IFN) regulatory factors (IRFs), known as viral IRFs (vIRFs). We demonstrate here that KSHV vIRF1, -2, and -3 have a differential ability to block type I interferon signaling mediated by Toll-like receptor 3 (TLR3), a receptor we have previously shown to be activated upon KSHV infection. vIRF1, -2, and -3 inhibited TLR3-driven activation of IFN transcription reporters. However, only vIRF1 and vIRF2 inhibited increases in both IFN-ß message and protein levels following TLR3 activation. The expression of vIRF1 and vIRF2 also allowed for increased replication of a virus known to activate TLR3 signaling. Furthermore, vIRF1 and vIRF2 may block TLR3-mediated signaling via different mechanisms. Altogether, this report indicates that vIRFs are able to block IFN mediated by TLRs but that each vIRF has a unique function and mechanism for blocking antiviral IFN responses.


Asunto(s)
Herpesvirus Humano 8/patogenicidad , Evasión Inmune , Factores Reguladores del Interferón/metabolismo , Interferones/antagonistas & inhibidores , Receptor Toll-Like 3/antagonistas & inhibidores , Proteínas Virales/metabolismo , Línea Celular , Herpesvirus Humano 8/inmunología , Humanos , Factores Reguladores del Interferón/inmunología , Interferones/inmunología , Receptor Toll-Like 3/inmunología , Proteínas Virales/inmunología
2.
J Virol ; 84(21): 11429-39, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20739538

RESUMEN

Previous studies with Venezuelan equine encephalitis virus and Sindbis virus (SINV) indicate that alphaviruses are capable of suppressing the cellular response to type I and type II interferons (IFNs) by disrupting Jak/STAT signaling; however, the relevance of this signaling inhibition toward pathogenesis has not been investigated. The relative abilities of neurovirulent and nonneurovirulent SINV strains to downregulate Jak/STAT signaling were compared to determine whether the ability to inhibit IFN signaling correlates with virulence potential. The adult mouse neurovirulent strain AR86 was found to rapidly and robustly inhibit tyrosine phosphorylation of STAT1 and STAT2 in response to IFN-γ and/or IFN-ß. In contrast, the closely related SINV strains Girdwood and TR339, which do not cause detectable disease in adult mice, were relatively inefficient inhibitors of STAT1/2 activation. Decreased STAT activation in AR86-infected cells was associated with decreased activation of the IFN receptor-associated tyrosine kinases Tyk2, Jak1, and Jak2. To identify the viral factor(s) involved, we infected cells with several panels of AR86/Girdwood chimeric viruses. Surprisingly, we found that a single amino acid determinant, threonine at nsP1 position 538, which is required for AR86 virulence, was also required for efficient disruption of STAT1 activation, and this determinant fully restored STAT1 inhibition when it was introduced into the avirulent Girdwood background. These data indicate that a key virulence determinant plays a critical role in downregulating the response to type I and type II IFNs, which suggests that the ability of alphaviruses to inhibit Jak/STAT signaling relates to their in vivo virulence potential.


Asunto(s)
Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Virus Sindbis/patogenicidad , Animales , Chlorocebus aethiops , Regulación hacia Abajo , Interferón Tipo I , Interferón gamma , Ratones , Fosforilación , Especificidad de la Especie , Células Vero , Virulencia
3.
Virology ; 435(2): 269-80, 2013 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-23084425

RESUMEN

The AR86 strain of Sindbis virus causes lethal neurologic disease in adult mice. Previous studies have identified a virulence determinant at nonstructural protein (nsP) 1 position 538 that regulates neurovirulence, modulates clearance from the CNS, and interferes with the type I interferon pathway. The studies herein demonstrate that in the absence of type I interferon signaling, the attenuated mutant exhibited equivalent virulence to S300 virus. Furthermore, both S300 and nsP1 T538I viruses displayed similar neurovirulence and replication kinetics in IPS-1-/- mice. TRIF dependent signaling played a modest role in protecting against disease by both S300 and nsP1 T538I, but did not contribute to control of nsP1 T538I replication within the CNS, while MyD88 played no role in the disease process. These results indicate that the control of the nsP1 T538I mutant virus is largely mediated by IPS-1-dependent RLR signaling, with TRIF-dependent TLR signaling also contributing to protection from virus-induced neurologic disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mutación , Virus Sindbis/genética , Virus Sindbis/patogenicidad , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Infecciones por Alphavirus/mortalidad , Infecciones por Alphavirus/virología , Animales , Línea Celular , Enfermedades Virales del Sistema Nervioso Central , Femenino , Regulación de la Expresión Génica , Interferón Tipo I/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Transducción de Señal , Virus Sindbis/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virulencia/genética , Replicación Viral
4.
J Mol Biol ; 392(5): 1205-20, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19646451

RESUMEN

In two-component regulatory systems, covalent phosphorylation typically activates the response regulator signaling protein, and hydrolysis of the phosphoryl group reestablishes the inactive state. Despite highly conserved three-dimensional structures and active-site features, the rates of catalytic autodephosphorylation for different response regulators vary by a factor of almost 10(6). Previous studies identified two variable active-site residues, corresponding to Escherichia coli CheY residues 59 and 89, that modulate response regulator autodephosphorylation rates about 100-fold. Here, a set of five CheY mutants, which match other "model" response regulators (ArcA, CusR, DctD, FixJ, PhoB, or Spo0F) at variable active-site positions corresponding to CheY residues 14, 59, and 89, were characterized functionally and structurally in an attempt to identify mechanisms that modulate autodephosphorylation rate. As expected, the autodephosphorylation rates of the CheY mutants were reduced 6- to 40-fold relative to wild-type CheY, but all still autodephosphorylated 12- to 80-fold faster than their respective model response regulators. Comparison of X-ray crystal structures of the five CheY mutants (complexed with the phosphoryl group analogue BeF(3)(-)) to wild-type CheY or corresponding model response regulator structures gave strong evidence for steric obstruction of the phosphoryl group from the attacking water molecule as one mechanism to enhance phosphoryl group stability. Structural data also suggested that impeding the change of a response regulator from the active to the inactive conformation might retard the autodephosphorylation reaction if the two processes are coupled, and that the residue at position '58' may contribute to rate modulation. A given combination of amino acids at positions '14', '59', and '89' adopted similar conformations regardless of protein context (CheY or model response regulator), suggesting that knowledge of residue identity may be sufficient to predict autodephosphorylation rate, and hence the kinetics of the signaling response, in the response regulator family of proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Escherichia coli/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/genética , Dominio Catalítico/genética , Cristalografía por Rayos X , Proteínas de Escherichia coli , Cinética , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfoproteínas Fosfatasas/genética , Fosforilación , Estructura Terciaria de Proteína , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA