Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 11(4): 1798-1812, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30631877

RESUMEN

The success of future organic electronic devices distinctively depends on the electronic and geometric properties of thin organic films. Although obviously these properties are strongly influenced by the growth mechanisms, real time growth studies are relatively rare since not many experimental techniques exist that allow in situ studies in ultra high vacuum. In this context, we investigated the prototypical system 1,4,5,8-naphtalene-tetracarboxylic-dianhydride (NTCDA) on Cu(001). We used low-energy electron microscopy (LEEM) for the real-time growth study, and a variety of other techniques for investigating the geometric and electronic structure. While for similar model systems well known and well characterized growth modi occur (e.g., compact, well ordered islands or disordered, gas-like layers), for NTCDA/Cu(001) we observe the growth of dendrite-like, fractal structures. The dendritic structures arise from a strongly preferred one-dimensional growth mode forming a long-range ordered network of thin molecular chains spanning over the entire surface already at small coverages. Later in the growth process, the voids in the network structure are incrementally filled. These results are very unexpected for such a simple adsorbate system consisting of well investigated components, the properties of which were believed to be already well understood. We explain this unexpected behavior by a dendritic growth model that is supported by energetic arguments based on pair-potential calculations. These calculations give reason for the experimentally observed growth of one-dimensional structures, and therefore represent the key to a semi-quantitative understanding of this dendritic growth mode.

2.
J Phys Condens Matter ; 31(11): 114003, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30616228

RESUMEN

Photoemission tomography (PT) is a newly developed method for analyzing angular resolved photoemission data. In combination with momentum microscopy it allows for a comprehensive investigation of the electronic structure of (in particular) metal-organic interfaces as they occur in organic electronic devices. The most interesting aspect in this context is the band alignment, the control of which is indispensable for designing devices. Since PT is based on characteristic photoemission patterns that are used as fingerprints, the method works well as long as these patterns are uniquely representing the specific molecular orbital they are originating from. But this limiting factor is often not fulfilled for systems exhibiting many differently oriented molecules, as they may occur on highly symmetric substrate surfaces. Here we show that this limitation can be lifted by recording the photoemission data in a momentum microscope and limiting the probed surface area to only a few micrometers squared, since this corresponds to a typical domain size for many systems. We demonstrate this by recording data from a single domain of the archetypal adsorbate system 1,4,5,8-naphthalenetetracarboxylic dianhydride on Cu(0 0 1). This proof of principle experiment paves the way for establishing the photoemission [Formula: see text]-tomography method as an ideal tool for investigating the electronic structure of metal-organic interfaces with so far unraveled clarity and unambiguity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA