Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 24(3)2019 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-30736408

RESUMEN

The biological production of ethanol from ethane for the utilization of ethane in natural gas was investigated under ambient conditions using whole-cell methanotrophs possessing methane monooxygenase. Several independent variables including ethane concentration and biocatalyst amounts, among other factors, were optimized for the enhancement of ethane-to-ethanol bioconversion. We obtained 0.4 g/L/h of volumetric productivity and 0.52 g/L of maximum titer in optimum batch reaction conditions. In this study, we demonstrate that the biological gas-to-liquid conversion of ethane to ethanol has potent technical feasibility as a new application of ethane gas.


Asunto(s)
Etano/metabolismo , Etanol/metabolismo , Oxigenasas/metabolismo , Bacterias/metabolismo , Biotransformación , Oxidación-Reducción , Termodinámica
2.
ACS Omega ; 9(10): 11895-11909, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497013

RESUMEN

An in-house Python-based algorithm was developed using simplified molecular-input line-entry specification (SMILES) strings and a dipole moment for estimating the normal boiling point, critical properties, standard enthalpy, vapor pressure, liquid molar volume, enthalpy of vaporization, heat capacity, viscosity, thermal conductivity, and surface tension of molecules. Normal boiling point, critical properties, and standard enthalpy were estimated by using the Joback group contribution method. Vapor pressure, liquid molar volume, enthalpy of vaporization, heat capacity, and surface tension were estimated by using the Riedel model, Gunn-Yamada model, Clausius-Clapeyron equation, Joback group contribution method, and Brock-Bird model, respectively. Viscosities of liquid and gas were estimated by using the Letsou-Stiel model and the Chapman-Enskog-Brokaw model, respectively. Thermal conductivities of liquid and gas were estimated by using the Sato-Riedel model and Stiel-Thodos model, respectively. Dipole moment was calculated through molecular dynamics simulation using the MMFF94 force field, performed with Avogadro software. A case study was conducted with dihydro-2-methyl-3-furanone (DHMF), 2-furaldehyde diethyl acetal (FDA), 1,1-diethoxy-3-methyl butane (DEMB), glutathione (GSH), vitamin B5 (VITB5), homocysteine (HCYS), and O-acetyl-l-homoserine (AH), which are not present in the existing property database. Cross-validation indicated that the developed Python-based algorithm provided pure component model parameters nearly identical with those obtained with the Aspen Property Constant Estimation System (PCES) method, except for the enthalpy of vaporization. The parameters for estimating the enthalpy of vaporization using the current Python-based algorithm accurately represented the behavior of the actual substances, as determined using the Clausius-Claperyon equation. This Python-based algorithm provides a detailed and clear reference for estimating pure property parameters.

3.
ChemSusChem ; 15(13): e202200240, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35438828

RESUMEN

2,5-Furandicarboxylic acid (FDCA) is one of the promising renewable plastic monomers enabling to address several environmental issues, instead of petroleum-based terephthalic acid (TPA). In this study, an integrative process for the co-production of FDCA and furfural as well as activated carbon was developed, and the economic feasibility and environmental sustainability for the proposed process were evaluated. In the proposed process, there were major four catalytic conversion reactions: (1) hydrolysis of biomass to its derivatives (cellulose, hemicellulose, and lignin), (2) dehydration of hemicellulose to furfural, (3) dehydration of cellulose to 5-hydroxymethylfurfural (HMF), and (4) successive oxidation of HMF to FDCA. Particularly, a heat exchanger network coupled with a heat pump was established to minimize the utility consumption, thereby reducing 72 % of the heating requirement. Techno-economic analysis revealed that the minimum selling price of FDCA was $1380 ton-1 , which is comparable to that of petroleum-based TPA ($1445 ton-1 ). Uncertainty analysis using the Monte Carlo simulation method was employed to quantify the risk associated with the unforeseen market condition. From the life-cycle assessment, we observed that the proposed process is more environmentally sustainable than conventional TPA production in terms of climate change and fossil depletion metrics.


Asunto(s)
Furaldehído , Petróleo , Deshidratación , Ácidos Dicarboxílicos , Furanos , Humanos , Lignina , Plásticos
4.
Bioresour Technol ; 364: 128028, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36174893

RESUMEN

In this study, an effort has been undertaken to study process design, techno-economic analysis, and life-cycle assessment (LCA) of lignin hydrogel (LH) which has potential applications in environmental remediation. Minimum selling price (MSP) of LHs has been estimated to be 2,141 US$/ton and it lies within the range of market price (1,420-2,280 US$/ton) for commercial coagulants. Further, sensitivity analysis has been conducted and it was observed that "% efficiency of lignin hydrogel production" and "lignin price" were the most influential parameters. Uncertainty analysis has also been conducted to study the influence of volatility in the market price of lignin and total capital investment on MSP of LH. From LCA study, it was estimated that the proposed process will emit 2.8 kg CO2 eq. and 1.1 kg Oil eq./kg lignin hydrogel. The developed process can be utilized for lignin upgradation in biorefineries to develop economically feasible and sustainable processes.

5.
Bioresour Technol ; 331: 125009, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33780837

RESUMEN

An integrated strategy of multiple catalytic conversions was developed to completely utilize three major fractions of biomass, thereby increasing the revenue from lignocellulosic biomass (white birch). Cellulose was converted into 1,6-hexanediol (1,6-HDO) with a yield of 21.8% via a series of catalytic conversions, hemicellulose was converted into furfural with a yield of 87.2% via dehydration, and lignin was purified into high-purity lignin with a yield of 71.7% via two-step purification. Heat integration was performed to mitigate the challenges associated with the large energy requirements of the process. Additionally, a techno-economic analysis was conducted to investigate the feasibility of the proposed process. The minimum selling price (MSP) of 1,6-HDO is estimated to be $3,922/ton, meaning that the economics of the proposed process are favorable compared to petroleum-derived 1,6-HDO production ($4,400/ton). The effect of economic parameters on the MSP of 1,6-HDO was also investigated via a wide array of sensitivity analyses.


Asunto(s)
Furaldehído , Lignina , Betula , Biomasa , Glicoles
6.
Sci Adv ; 4(1): eaap9722, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29372184

RESUMEN

We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.

7.
Sci Adv ; 3(5): e1603301, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28560350

RESUMEN

The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA