Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
BMC Genomics ; 25(1): 175, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38350848

RESUMEN

BACKGROUND: Brain diseases pose a significant threat to human health, and various network-based methods have been proposed for identifying gene biomarkers associated with these diseases. However, the brain is a complex system, and extracting topological semantics from different brain networks is necessary yet challenging to identify pathogenic genes for brain diseases. RESULTS: In this study, we present a multi-network representation learning framework called M-GBBD for the identification of gene biomarker in brain diseases. Specifically, we collected multi-omics data to construct eleven networks from different perspectives. M-GBBD extracts the spatial distributions of features from these networks and iteratively optimizes them using Kullback-Leibler divergence to fuse the networks into a common semantic space that represents the gene network for the brain. Subsequently, a graph consisting of both gene and large-scale disease proximity networks learns representations through graph convolution techniques and predicts whether a gene is associated which brain diseases while providing associated scores. Experimental results demonstrate that M-GBBD outperforms several baseline methods. Furthermore, our analysis supported by bioinformatics revealed CAMP as a significantly associated gene with Alzheimer's disease identified by M-GBBD. CONCLUSION: Collectively, M-GBBD provides valuable insights into identifying gene biomarkers for brain diseases and serves as a promising framework for brain networks representation learning.


Asunto(s)
Enfermedad de Alzheimer , Semántica , Humanos , Encéfalo/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Marcadores Genéticos , Aprendizaje
2.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36070867

RESUMEN

Circular RNAs (circRNAs) are involved in the regulatory mechanisms of multiple complex diseases, and the identification of their associations is critical to the diagnosis and treatment of diseases. In recent years, many computational methods have been designed to predict circRNA-disease associations. However, most of the existing methods rely on single correlation data. Here, we propose a machine learning framework for circRNA-disease association prediction, called MLCDA, which effectively fuses multiple sources of heterogeneous information including circRNA sequences and disease ontology. Comprehensive evaluation in the gold standard dataset showed that MLCDA can successfully capture the complex relationships between circRNAs and diseases and accurately predict their potential associations. In addition, the results of case studies on real data show that MLCDA significantly outperforms other existing methods. MLCDA can serve as a useful tool for circRNA-disease association prediction, providing mechanistic insights for disease research and thus facilitating the progress of disease treatment.


Asunto(s)
Aprendizaje Automático , ARN Circular , Biología Computacional/métodos
3.
BMC Bioinformatics ; 24(1): 188, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158823

RESUMEN

BACKGROUND: The limited knowledge of miRNA-lncRNA interactions is considered as an obstruction of revealing the regulatory mechanism. Accumulating evidence on Human diseases indicates that the modulation of gene expression has a great relationship with the interactions between miRNAs and lncRNAs. However, such interaction validation via crosslinking-immunoprecipitation and high-throughput sequencing (CLIP-seq) experiments that inevitably costs too much money and time but with unsatisfactory results. Therefore, more and more computational prediction tools have been developed to offer many reliable candidates for a better design of further bio-experiments. METHODS: In this work, we proposed a novel link prediction model based on Gaussian kernel-based method and linear optimization algorithm for inferring miRNA-lncRNA interactions (GKLOMLI). Given an observed miRNA-lncRNA interaction network, the Gaussian kernel-based method was employed to output two similarity matrixes of miRNAs and lncRNAs. Based on the integrated matrix combined with similarity matrixes and the observed interaction network, a linear optimization-based link prediction model was trained for inferring miRNA-lncRNA interactions. RESULTS: To evaluate the performance of our proposed method, k-fold cross-validation (CV) and leave-one-out CV were implemented, in which each CV experiment was carried out 100 times on a training set generated randomly. The high area under the curves (AUCs) at 0.8623 ± 0.0027 (2-fold CV), 0.9053 ± 0.0017 (5-fold CV), 0.9151 ± 0.0013 (10-fold CV), and 0.9236 (LOO-CV), illustrated the precision and reliability of our proposed method. CONCLUSION: GKLOMLI with high performance is anticipated to be used to reveal underlying interactions between miRNA and their target lncRNAs, and deciphers the potential mechanisms of the complex diseases.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Reproducibilidad de los Resultados , Proyectos de Investigación , Algoritmos , MicroARNs/genética
4.
J Transl Med ; 20(1): 552, 2022 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-36463215

RESUMEN

BACKGROUND: Associations of drugs with diseases provide important information for expediting drug development. Due to the number of known drug-disease associations is still insufficient, and considering that inferring associations between them through traditional in vitro experiments is time-consuming and costly. Therefore, more accurate and reliable computational methods urgent need to be developed to predict potential associations of drugs with diseases. METHODS: In this study, we present the model called weighted graph regularized collaborative non-negative matrix factorization for drug-disease association prediction (WNMFDDA). More specifically, we first calculated the drug similarity and disease similarity based on the chemical structures of drugs and medical description information of diseases, respectively. Then, to extend the model to work for new drugs and diseases, weighted [Formula: see text] nearest neighbor was used as a preprocessing step to reconstruct the interaction score profiles of drugs with diseases. Finally, a graph regularized non-negative matrix factorization model was used to identify potential associations between drug and disease. RESULTS: During the cross-validation process, WNMFDDA achieved the AUC values of 0.939 and 0.952 on Fdataset and Cdataset under ten-fold cross validation, respectively, which outperforms other competing prediction methods. Moreover, case studies for several drugs and diseases were carried out to further verify the predictive performance of WNMFDDA. As a result, 13(Doxorubicin), 13(Amiodarone), 12(Obesity) and 12(Asthma) of the top 15 corresponding candidate diseases or drugs were confirmed by existing databases. CONCLUSIONS: The experimental results adequately demonstrated that WNMFDDA is a very effective method for drug-disease association prediction. We believe that WNMFDDA is helpful for relevant biomedical researchers in follow-up studies.


Asunto(s)
Algoritmos , Asma , Humanos , Análisis por Conglomerados , Bases de Datos Factuales , Proyectos de Investigación
5.
Appl Soft Comput ; 111: 107831, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34456656

RESUMEN

The COVID-19 has now spread all over the world and causes a huge burden for public health and world economy. Drug repositioning has become a promising treatment strategy in COVID-19 crisis because it can shorten drug development process, reduce pharmaceutical costs and reposition approval drugs. Existing computational methods only focus on single information, such as drug and virus similarity or drug-virus network feature, which is not sufficient to predict potential drugs. In this paper, a sequence combined attentive network embedding model SANE is proposed for identifying drugs based on sequence features and network features. On the one hand, drug SMILES and virus sequence features are extracted by encoder-decoder in SANE as node initial embedding in drug-virus network. On the other hand, SANE obtains fields for each node by attention-based Depth-First-Search (DFS) to reduce noises and improve efficiency in representation learning and adopts a bottom-up aggregation strategy to learn node network representation from selected fields. Finally, a forward neural network is used for classifying. Experiment results show that SANE has achieved the performance with 81.98% accuracy and 0.8961 AUC value and outperformed state-of-the-art baselines. Further case study on COVID-19 indicates that SANE has a strong predictive ability since 25 of the top 40 (62.5%) drugs are verified by valuable dataset and literatures. Therefore, SANE is powerful to reposition drugs for COVID-19 and provides a new perspective for drug repositioning.

6.
BMC Bioinformatics ; 21(1): 401, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912137

RESUMEN

BACKGROUND: As an important non-coding RNA, microRNA (miRNA) plays a significant role in a series of life processes and is closely associated with a variety of Human diseases. Hence, identification of potential miRNA-disease associations can make great contributions to the research and treatment of Human diseases. However, to our knowledge, many existing computational methods only utilize the single type of known association information between miRNAs and diseases to predict their potential associations, without focusing on their interactions or associations with other types of molecules. RESULTS: In this paper, we propose a network embedding-based method for predicting miRNA-disease associations by preserving behavior and attribute information. Firstly, a heterogeneous network is constructed by integrating known associations among miRNA, protein and disease, and the network representation method Learning Graph Representations with Global Structural Information (GraRep) is implemented to learn the behavior information of miRNAs and diseases in the network. Then, the behavior information of miRNAs and diseases is combined with the attribute information of them to represent miRNA-disease association pairs. Finally, the prediction model is established based on the Random Forest algorithm. Under the five-fold cross validation, the proposed NEMPD model obtained average 85.41% prediction accuracy with 80.96% sensitivity at the AUC of 91.58%. Furthermore, the performance of NEMPD is also validated by the case studies. Among the top 50 predicted disease-related miRNAs, 48 (breast neoplasms), 47 (colon neoplasms), 47 (lung neoplasms) were confirmed by two other databases. CONCLUSIONS: The proposed NEMPD model has a good performance in predicting the potential associations between miRNAs and diseases, and has great potency in the field of miRNA-disease association prediction in the future.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Neoplasias del Colon/diagnóstico , Biología Computacional/métodos , Neoplasias Pulmonares/diagnóstico , MicroARNs/metabolismo , Algoritmos , Área Bajo la Curva , Neoplasias de la Mama/genética , Neoplasias del Colon/genética , Femenino , Humanos , Neoplasias Pulmonares/genética , MicroARNs/genética , Curva ROC
7.
J Cell Mol Med ; 24(1): 79-87, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31568653

RESUMEN

LncRNA and miRNA are key molecules in mechanism of competing endogenous RNAs(ceRNA), and their interactions have been discovered with important roles in gene regulation. As supplementary to the identification of lncRNA-miRNA interactions from CLIP-seq experiments, in silico prediction can select the most potential candidates for experimental validation. Although developing computational tool for predicting lncRNA-miRNA interaction is of great importance for deciphering the ceRNA mechanism, little effort has been made towards this direction. In this paper, we propose an approach based on linear neighbour representation to predict lncRNA-miRNA interactions (LNRLMI). Specifically, we first constructed a bipartite network by combining the known interaction network and similarities based on expression profiles of lncRNAs and miRNAs. Based on such a data integration, linear neighbour representation method was introduced to construct a prediction model. To evaluate the prediction performance of the proposed model, k-fold cross validations were implemented. As a result, LNRLMI yielded the average AUCs of 0.8475 ± 0.0032, 0.8960 ± 0.0015 and 0.9069 ± 0.0014 on 2-fold, 5-fold and 10-fold cross validation, respectively. A series of comparison experiments with other methods were also conducted, and the results showed that our method was feasible and effective to predict lncRNA-miRNA interactions via a combination of different types of useful side information. It is anticipated that LNRLMI could be a useful tool for predicting non-coding RNA regulation network that lncRNA and miRNA are involved in.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , Área Bajo la Curva , Perfilación de la Expresión Génica , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética
8.
Int J Mol Sci ; 20(4)2019 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-30795499

RESUMEN

It is significant for biological cells to predict self-interacting proteins (SIPs) in the field of bioinformatics. SIPs mean that two or more identical proteins can interact with each other by one gene expression. This plays a major role in the evolution of protein‒protein interactions (PPIs) and cellular functions. Owing to the limitation of the experimental identification of self-interacting proteins, it is more and more significant to develop a useful biological tool for the prediction of SIPs from protein sequence information. Therefore, we propose a novel prediction model called RP-FFT that merges the Random Projection (RP) model and Fast Fourier Transform (FFT) for detecting SIPs. First, each protein sequence was transformed into a Position Specific Scoring Matrix (PSSM) using the Position Specific Iterated BLAST (PSI-BLAST). Second, the features of protein sequences were extracted by the FFT method on PSSM. Lastly, we evaluated the performance of RP-FFT and compared the RP classifier with the state-of-the-art support vector machine (SVM) classifier and other existing methods on the human and yeast datasets; after the five-fold cross-validation, the RP-FFT model can obtain high average accuracies of 96.28% and 91.87% on the human and yeast datasets, respectively. The experimental results demonstrated that our RP-FFT prediction model is reasonable and robust.


Asunto(s)
Análisis de Fourier , Análisis de Secuencia de Proteína/métodos , Máquina de Vectores de Soporte , Animales , Sitios de Unión , Humanos , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química
9.
Nanomedicine ; 14(4): 1395-1405, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29635082

RESUMEN

Herein, we report an efficient combinatorial therapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. DJ-1 protein modulates, either directly or indirectly, different oncogenic pathways that support and promote survival, growth, and invasion of ovarian cancer cells. To evaluate the potential of this novel therapy, we have engineered a cancer-targeted nanoplatform and validated that DJ-1 siRNA delivered by this nanoplatform after intraperitoneal injection efficiently downregulates the DJ-1 protein in metastatic ovarian cancer tumors and ascites. In vivo experiments revealed that DJ-1 siRNA monotherapy outperformed cisplatin alone by inhibiting tumor growth and increasing survival of mice with metastatic ovarian cancer. Finally, three cycles of siRNA-mediated DJ-1 therapy in combination with a low dose of cisplatin completely eradicated ovarian cancer tumors from the mice, and there was no cancer recurrence detected for the duration of the study, which lasted 35 weeks.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Proteína Desglicasa DJ-1/metabolismo , ARN Interferente Pequeño/genética , Animales , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Cisplatino/administración & dosificación , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/genética , Proteína Desglicasa DJ-1/genética
10.
Int J Mol Sci ; 17(1)2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26712745

RESUMEN

Protein-Protein Interactions (PPIs) play a vital role in most cellular processes. Although many efforts have been devoted to detecting protein interactions by high-throughput experiments, these methods are obviously expensive and tedious. Targeting these inevitable disadvantages, this study develops a novel computational method to predict PPIs using information on protein sequences, which is highly efficient and accurate. The improvement mainly comes from the use of the Rotation Forest (RF) classifier and the Local Phase Quantization (LPQ) descriptor from the Physicochemical Property Response (PR) Matrix of protein amino acids. When performed on three PPI datasets including Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori, we obtained good results of average accuracies of 93.8%, 97.96%, and 89.47%, which are much better than in previous studies. Extensive validations have also been explored to evaluate the performance of the Rotation Forest ensemble classifier with the state-of-the-art Support Vector Machine classifier. These promising results indicate that the proposed method might play a complementary role for future proteomics research.


Asunto(s)
Proteoma/metabolismo , Proteómica/métodos , Programas Informáticos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Unión Proteica , Proteoma/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
11.
IEEE J Biomed Health Inform ; 28(3): 1742-1751, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127594

RESUMEN

Growing studies reveal that Circular RNAs (circRNAs) are broadly engaged in physiological processes of cell proliferation, differentiation, aging, apoptosis, and are closely associated with the pathogenesis of numerous diseases. Clarification of the correlation among diseases and circRNAs is of great clinical importance to provide new therapeutic strategies for complex diseases. However, previous circRNA-disease association prediction methods rely excessively on the graph network, and the model performance is dramatically reduced when noisy connections occur in the graph structure. To address this problem, this paper proposes an unsupervised deep graph structure learning method GSLCDA to predict potential CDAs. Concretely, we first integrate circRNA and disease multi-source data to constitute the CDA heterogeneous network. Then the network topology is learned using the graph structure, and the original graph is enhanced in an unsupervised manner by maximize the inter information of the learned and original graphs to uncover their essential features. Finally, graph space sensitive k-nearest neighbor (KNN) algorithm is employed to search for latent CDAs. In the benchmark dataset, GSLCDA obtained 92.67% accuracy with 0.9279 AUC. GSLCDA also exhibits exceptional performance on independent datasets. Furthermore, 14, 12 and 14 of the top 16 circRNAs with the most points GSLCDA prediction scores were confirmed in the relevant literature in the breast cancer, colorectal cancer and lung cancer case studies, respectively. Such results demonstrated that GSLCDA can validly reveal underlying CDA and offer new perspectives for the diagnosis and therapy of complex human diseases.


Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Humanos , Femenino , ARN Circular/genética , Neoplasias de la Mama/genética , Algoritmos , Envejecimiento , Biología Computacional/métodos
12.
IEEE J Biomed Health Inform ; 28(3): 1752-1761, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145538

RESUMEN

With a growing body of evidence establishing circular RNAs (circRNAs) are widely exploited in eukaryotic cells and have a significant contribution in the occurrence and development of many complex human diseases. Disease-associated circRNAs can serve as clinical diagnostic biomarkers and therapeutic targets, providing novel ideas for biopharmaceutical research. However, available computation methods for predicting circRNA-disease associations (CDAs) do not sufficiently consider the contextual information of biological network nodes, making their performance limited. In this work, we propose a multi-hop attention graph neural network-based approach MAGCDA to infer potential CDAs. Specifically, we first construct a multi-source attribute heterogeneous network of circRNAs and diseases, then use a multi-hop strategy of graph nodes to deeply aggregate node context information through attention diffusion, thus enhancing topological structure information and mining data hidden features, and finally use random forest to accurately infer potential CDAs. In the four gold standard data sets, MAGCDA achieved prediction accuracy of 92.58%, 91.42%, 83.46% and 91.12%, respectively. MAGCDA has also presented prominent achievements in ablation experiments and in comparisons with other models. Additionally, 18 and 17 potential circRNAs in top 20 predicted scores for MAGCDA prediction scores were confirmed in case studies of the complex diseases breast cancer and Almozheimer's disease, respectively. These results suggest that MAGCDA can be a practical tool to explore potential disease-associated circRNAs and provide a theoretical basis for disease diagnosis and treatment.


Asunto(s)
Neoplasias de la Mama , ARN Circular , Humanos , Femenino , ARN Circular/genética , Redes Neurales de la Computación , Biomarcadores , Biología Computacional/métodos
13.
Front Genet ; 14: 1084482, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37274787

RESUMEN

Identification of long non-coding RNAs (lncRNAs) associated with common diseases is crucial for patient self-diagnosis and monitoring of health conditions using artificial intelligence (AI) technology at home. LncRNAs have gained significant attention due to their crucial roles in the pathogenesis of complex human diseases and identifying their associations with diseases can aid in developing diagnostic biomarkers at the molecular level. Computational methods for predicting lncRNA-disease associations (LDAs) have become necessary due to the time-consuming and labor-intensive nature of wet biological experiments in hospitals, enabling patients to access LDAs through their AI terminal devices at any time. Here, we have developed a predictive tool, LDAGRL, for identifying potential LDAs using a bridge heterogeneous information network (BHnet) constructed via Structural Deep Network Embedding (SDNE). The BHnet consists of three types of molecules as bridge nodes to implicitly link the lncRNA with disease nodes and the SDNE is used to learn high-quality node representations and make LDA predictions in a unified graph space. To assess the feasibility and performance of LDAGRL, extensive experiments, including 5-fold cross-validation, comparison with state-of-the-art methods, comparison on different classifiers and comparison of different node feature combinations, were conducted, and the results showed that LDAGRL achieved satisfactory prediction performance, indicating its potential as an effective LDAs prediction tool for family medicine and primary care.

14.
ACS Omega ; 8(30): 27386-27397, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37546619

RESUMEN

Identifying noncoding RNAs (ncRNAs)-drug resistance association computationally would have a marked effect on understanding ncRNA molecular function and drug target mechanisms and alleviating the screening cost of corresponding biological wet experiments. Although graph neural network-based methods have been developed and facilitated the detection of ncRNAs related to drug resistance, it remains a challenge to explore a highly trusty ncRNA-drug resistance association prediction framework, due to inevitable noise edges originating from the batch effect and experimental errors. Herein, we proposed a framework, referred to as RDRGSE (RDR association prediction by using graph skeleton extraction and attentional feature fusion), for detecting ncRNA-drug resistance association. Specifically, starting with the construction of the original ncRNA-drug resistance association as a bipartite graph, RDRGSE took advantage of a bi-view skeleton extraction strategy to obtain two types of skeleton views, followed by a graph neural network-based estimator for iteratively optimizing skeleton views aimed at learning high-quality ncRNA-drug resistance edge embedding and optimal graph skeleton structure, jointly. Then, RDRGSE adopted adaptive attentional feature fusion to obtain final edge embedding and identified potential RDRAs under an end-to-end pattern. Comprehensive experiments were conducted, and experimental results indicated the significant advantage of a skeleton structure for ncRNA-drug resistance association discovery. Compared with state-of-the-art approaches, RDRGSE improved the prediction performance by 6.7% in terms of AUC and 6.1% in terms of AUPR. Also, ablation-like analysis and independent case studies corroborated RDRGSE generalization ability and robustness. Overall, RDRGSE provides a powerful computational method for ncRNA-drug resistance association prediction, which can also serve as a screening tool for drug resistance biomarkers.

15.
IEEE/ACM Trans Comput Biol Bioinform ; 20(5): 2610-2618, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35675235

RESUMEN

Accumulating evidences show that circular RNAs (circRNAs) play an important role in regulating gene expression, and involve in many complex human diseases. Identifying associations of circRNA with disease helps to understand the pathogenesis, treatment and diagnosis of complex diseases. Since inferring circRNA-disease associations by biological experiments is costly and time-consuming, there is an urgently need to develop a computational model to identify the association between them. In this paper, we proposed a novel method named KNN-NMF, which combines K nearest neighbors with nonnegative matrix factorization to infer associations between circRNA and disease (KNN-NMF). Frist, we compute the Gaussian Interaction Profile (GIP) kernel similarity of circRNA and disease, the semantic similarity of disease, respectively. Then, the circRNA-disease new interaction profiles are established using weight K nearest neighbors to reduce the false negative association impact on prediction performance. Finally, Nonnegative Matrix Factorization is implemented to predict associations of circRNA with disease. The experiment results indicate that the prediction performance of KNN-NMF outperforms the competing methods under five-fold cross-validation. Moreover, case studies of two common diseases further show that KNN-NMF can identify potential circRNA-disease associations effectively.

16.
IEEE J Biomed Health Inform ; 27(1): 573-582, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36301791

RESUMEN

Identifying protein targets for drugs establishes an indispensable knowledge foundation for drug repurposing and drug development. Though expensive and time-consuming, vitro trials are widely employed to discover drug targets, and the existing relevant computational algorithms still cannot satisfy the demand for real application in drug R&D with regards to the prediction accuracy and performance efficiency, which are urgently needed to be improved. To this end, we propose here the PPAEDTI model, which uses the graph personalized propagation technique to predict drug-target interactions from the known interaction network. To evaluate the prediction performance, six benchmark datasets were used for testing with some state-of-the-art methods compared. As a result, using the 5-fold cross-validation, the proposed PPAEDTI model achieves average AUCs>90% on 5 collected datasets. We also manually checked the top-20 prediction list for 2 proteins (hsa:775 and hsa:779) and a kind of drug (D00618), and successfully confirmed 18, 17, and 20 items from the public datasets, respectively. The experimental results indicate that, given known drug-target interactions, the PPAEDTI model can provide accurate predictions for the new ones, which is anticipated to serve as a useful tool for pharmacology research. Using the proposed model that was trained with the collected datasets, we have built a computational platform that is accessible at http://120.77.11.78/PPAEDTI/ and corresponding codes and datasets are also released.


Asunto(s)
Algoritmos , Reposicionamiento de Medicamentos , Humanos , Interacciones Farmacológicas , Área Bajo la Curva , Proteínas/metabolismo
17.
J Vasc Surg Venous Lymphat Disord ; 11(4): 774-782.e1, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37028512

RESUMEN

OBJECTIVE: Obesity is highly prevalent and a major risk factor for deep vein thrombosis (DVT) and chronic venous disease. It can also technically limit duplex ultrasound evaluations for lower extremity DVT. We compared the rates and results of repeat lower extremity venous duplex ultrasound (LEVDUS) after an initial incomplete and negative (IIN) LEVDUS in overweight (body mass index [BMI] ≤25-30 kg/m2) and obese (BMI ≥30 kg/m2) patients with those of patients with a BMI <25 kg/m2 to evaluate whether increasing the rate of follow-up examinations in overweight and obese patients might facilitate improved patient care. METHODS: We performed a retrospective review of 617 patients with an IIN LEVDUS study from December 31, 2017 to December 31, 2020. Demographic and imaging data of the patients with an IIN LEVDUS and the frequency of repeat studies performed within 2 weeks were abstracted from the electronic medical records. The patients were divided into three BMI-based groups: normal (BMI <25 kg/m2), overweight (BMI 25-30 kg/m2), and obese (BMI ≥30 kg/m2). RESULTS: Of the 617 patients with an IIN LEVDUS, 213 (34.5%) were normal weight, 177 (29%) were overweight, and 227 (37%) were obese. The repeat LEVDUS rates were significantly different across the three weight groups (P < .001). After an IIN LEVDUS, the rate of repeat LEVDUS for the normal weight, overweight, and obese groups was 46% (98 of 213), 28% (50 of 227), and 32% (73 of 227), respectively. The overall rates of thrombosis (both DVT and superficial vein thrombosis) in the repeat LEVDUS examinations were not significantly different among the normal weight (14%), overweight (11%), and obese (18%) patients (P = .431). CONCLUSIONS: Overweight and obese patients (BMI ≥25 kg/m2) received fewer follow-up examinations after an IIN LEVDUS. Follow-up LEVDUS examinations of overweight and obese patients after an IIN LEVDUS study have similar rates of venous thrombosis compared with normal weight patients. Targeting improving usage of follow-up LEVDUS studies for all patients, but especially for those who are overweight and obese, with an IIN LEVDUS through quality improvement efforts could help minimize missed diagnoses of venous thrombosis and improve the quality of patient care.


Asunto(s)
Trombosis , Trombosis de la Vena , Humanos , Índice de Masa Corporal , Sobrepeso/complicaciones , Sobrepeso/diagnóstico por imagen , Estudios de Seguimiento , Trombosis de la Vena/diagnóstico por imagen , Trombosis de la Vena/terapia , Obesidad/complicaciones , Estudios Retrospectivos
18.
Biology (Basel) ; 11(5)2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35625469

RESUMEN

As the basis for screening drug candidates, the identification of drug-target interactions (DTIs) plays a crucial role in the innovative drugs research. However, due to the inherent constraints of small-scale and time-consuming wet experiments, DTI recognition is usually difficult to carry out. In the present study, we developed a computational approach called RoFDT to predict DTIs by combining feature-weighted Rotation Forest (FwRF) with a protein sequence. In particular, we first encode protein sequences as numerical matrices by Position-Specific Score Matrix (PSSM), then extract their features utilize Pseudo Position-Specific Score Matrix (PsePSSM) and combine them with drug structure information-molecular fingerprints and finally feed them into the FwRF classifier and validate the performance of RoFDT on Enzyme, GPCR, Ion Channel and Nuclear Receptor datasets. In the above dataset, RoFDT achieved 91.68%, 84.72%, 88.11% and 78.33% accuracy, respectively. RoFDT shows excellent performance in comparison with support vector machine models and previous superior approaches. Furthermore, 7 of the top 10 DTIs with RoFDT estimate scores were proven by the relevant database. These results demonstrate that RoFDT can be employed to a powerful predictive approach for DTIs to provide theoretical support for innovative drug discovery.

19.
Biomedicines ; 10(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35884848

RESUMEN

Protein is the basic organic substance that constitutes the cell and is the material condition for the life activity and the guarantee of the biological function activity. Elucidating the interactions and functions of proteins is a central task in exploring the mysteries of life. As an important protein interaction, self-interacting protein (SIP) has a critical role. The fast growth of high-throughput experimental techniques among biomolecules has led to a massive influx of available SIP data. How to conduct scientific research using the massive amount of SIP data has become a new challenge that is being faced in related research fields such as biology and medicine. In this work, we design an SIP prediction method SIPGCN using a deep learning graph convolutional network (GCN) based on protein sequences. First, protein sequences are characterized using a position-specific scoring matrix, which is able to describe the biological evolutionary message, then their hidden features are extracted by the deep learning method GCN, and, finally, the random forest is utilized to predict whether there are interrelationships between proteins. In the cross-validation experiment, SIPGCN achieved 93.65% accuracy and 99.64% specificity in the human data set. SIPGCN achieved 90.69% and 99.08% of these two indicators in the yeast data set, respectively. Compared with other feature models and previous methods, SIPGCN showed excellent results. These outcomes suggest that SIPGCN may be a suitable instrument for predicting SIP and may be a reliable candidate for future wet experiments.

20.
IEEE J Biomed Health Inform ; 26(10): 5075-5084, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35976848

RESUMEN

Increasing evidence suggest that circRNA, as one of the most promising emerging biomarkers, has a very close relationship with diseases. Exploring the relationship between circRNA and diseases can provide novel perspective for diseases diagnosis and pathogenesis. The existing circRNA-disease association (CDA) prediction models, however, generally treat the data attributes equally, do not pay special attention to the attributes with more significant influence, and do not make full use of the correlation and symbiosis between attributes to dig into the latent semantic information of the data. Therefore, in response to the above problems, this paper proposes a natural semantic enhancement method NSECDA to predict CDA. In practical terms, we first recognize the circRNA sequence as a biological language, and analyze its natural semantic properties through the natural language understanding theory; then integrate it with disease attributes, circRNA and disease Gaussian Interaction Profile (GIP) kernel attributes, and use Graph Attention Network (GAT) to focus on the influential attributes, so as to mine the deeply hidden features; finally, the Rotation Forest (RoF) classifier was used to accurately determine CDA. In the gold standard data set CircR2Disease, NSECDA achieved 92.49% accuracy with 0.9225 AUC score. In comparison with the non-natural semantic enhancement model and other classifier models, NSECDA also shows competitive performance. Additionally, 25 of the CDA pairs with unknown associations in the top 30 prediction scores of NSECDA have been proven by newly reported studies. These achievements suggest that NSECDA is an effective model to predict CDA, which can provide credible candidate for subsequent wet experiments, thus significantly reducing the scope of investigations.


Asunto(s)
ARN Circular , Semántica , Algoritmos , Biología Computacional/métodos , Humanos , ARN Circular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA