Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Trop ; 251: 107122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246399

RESUMEN

Strongyloidiasis, caused by the nematode Strongyloides stercoralis, remains a threat to global public health, and a vaccine would be useful to control the disease, especially in developing countries. This study aimed to evaluate the efficacy of recombinant proteins, A133 and Ss-IR, as potential vaccine candidates against strongyloidiasis by investigating the humoral and cellular immune responses in immunized mice. Respective antigens were adjuvanted with Complete Freund's Adjuvant (prime) and Incomplete Freund's Adjuvant (boost) and administered intraperitoneally (prime) and subcutaneously (boost) to female BALB/c mice. For antigen-only doses, only antigens were injected without adjuvants. Altogether, 1 prime dose, 4 booster doses, and 2 antigen-only doses were administered successively. ELISAs were conducted to assess the antibody responses, along with flow cytometry and cytokine ELISA to elucidate the cellular immune responses. Results showed that A133 and Ss-IR induced the production of IgG1 and IgG2a, with A133 generating more robust IgG2a responses than Ss-IR. Flow cytometry findings indicated that effector CD8+T-cells and memory B-cells activity were upregulated significantly for A133 only, whereas cytokine ELISA demonstrated that a Th1/Th2/Th17 mixed cell responses were triggered upon vaccination with either antigen. This preliminary study illustrated the good potential of recombinant A133 and Ss-IR as vaccine candidates against S. stercoralis. It provided information on the probable immune mechanism involved in host defence and the elicitation of protection against S. stercoralis.


Asunto(s)
Strongyloides stercoralis , Estrongiloidiasis , Vacunas , Femenino , Animales , Ratones , Strongyloides stercoralis/genética , Inmunoglobulina G , Estrongiloidiasis/prevención & control , Inmunización , Vacunación , Adyuvantes Inmunológicos , Citocinas/metabolismo , Ratones Endogámicos BALB C
2.
Trop Med Infect Dis ; 9(7)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058181

RESUMEN

Heat shock protein 16-kDa (HSP 16-kDa) is essential for the survival of Mycobacterium tuberculosis (M. tuberculosis) during the latent period; hence, a peptide-MHC presentation of HSP 16-kDa could be a potential diagnostic and therapeutic target for latent tuberculosis (LTB). This study aimed to generate a TCR-like single-domain antibody (sDAb)-human IgG1 antibody and subsequently investigate its diagnostic and therapeutic potential in LTB, utilizing a model cell presenting the target peptide. A previously generated TCR-like sDAB that can bind to HSP 16-kDa was first fused to a human IgG1 Fc-receptor via a linker. The fusion product, sDAb-IgG1, was expressed with HEK293-F and was subsequently purified. Its diagnostic potential was investigated via cell-based ELISA utilizing MCF-7 cells peptide-pulsed with HSP 16-kDa peptides. Investigation into the antibody-dependent cell-mediated cytotoxicity (ADCC) of MCF-7 cells was also conducted to investigate its therapeutic potential. Finally, TCR-like sDAb-IgG1 was successfully produced transiently with HEK-293F and was purified using protein A chromatography. The generated antibody was tested using cell-based ELISA, which demonstrated the effective binding of the TCR-like sDAb-IgG1 to the 16-kDa peptide-MHC on the cell surface. The ADCC assay also showed that the antibody effectively mediated the ADCC of MCF-7 cells with the help of 16-kDa peptide-MHC. This allows us to hypothesize the possible utility of the said antibody for both diagnostics and therapeutics of latent tuberculosis after more investigations with clinical samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA