Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Radiology ; 306(2): e213198, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36165790

RESUMEN

Background A new modality, phase-sensitive breast tomosynthesis (PBT), may have similar diagnostic performance to conventional breast tomosynthesis but with a reduced radiation dose. Purpose To perform a pilot study of the performance of a novel PBT system compared with conventional digital breast tomosynthesis (DBT) in patients undergoing additional diagnostic imaging workup for breast lesions. Materials and Methods In a prospective study from June 2020 to March 2021, participants with suspicious breast lesions detected at screening DBT or MRI were recruited for additional PBT imaging before additional diagnostic workup or biopsy. In this pilot study, nine radiologists independently evaluated image quality and assessed the likelihood of lesion malignancy by retrospectively evaluating DBT and PBT images in two separate reading sessions. Image quality was rated subjectively using a Likert scale from 1 to 5. Areas under the receiver operating characteristic curve (AUCs) were used to compare the lesion classification (malignant vs benign) performance of the radiologists. Results Images in 50 patients (mean age, 56 years ± 12 [SD]; 49 women) with 52 evaluable lesions (28 malignant) were assessed. For image appearance and general feature visibility, DBT images had a higher total mean image quality score (3.8) than PBT images (2.9), with P < .002 for each comparison. For classification of lesions as benign or malignant, the AUCs were 0.74 for both PBT and DBT. PBT images were acquired at a 24% mean radiation dose reduction (mean, 1.78 mGy vs 2.34 mGy for DBT; P < .001). Conclusion The phase-sensitive breast tomosynthesis system had a 24% lower mean radiation dose compared with digital breast tomosynthesis, although with lower image quality. Diagnostic performance of the system remains to be determined in larger studies. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Gao and Moy in this issue.


Asunto(s)
Neoplasias de la Mama , Mama , Femenino , Humanos , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Estudios Retrospectivos , Mama/diagnóstico por imagen , Mamografía/métodos , Neoplasias de la Mama/patología
2.
J Xray Sci Technol ; 22(3): 321-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24865208

RESUMEN

The goal of this preliminary study was to perform an image quality comparison of high energy phase sensitive imaging with low energy conventional imaging at similar radiation doses. The comparison was performed with the following phantoms: American College of Radiology (ACR), contrast-detail (CD), acrylic edge and tissue-equivalent. Visual comparison of the phantom images indicated comparable or improved image quality for all phantoms. Quantitative comparisons were performed through ACR and CD observer studies, both of which indicated higher image quality in the high energy phase sensitive images. The results of this study demonstrate the ability of high energy phase sensitive imaging to overcome existing challenges with the clinical implementation of phase contrast imaging and improve the image quality for a similar radiation dose as compared to conventional imaging near typical mammography energies. In addition, the results illustrate the capability of phase sensitive imaging to sustain the image quality improvement at high x-ray energies and for breast simulating phantoms, both of which indicate the potential to benefit fields such as mammography. Future studies will continue to investigate the potential for dose reduction and image quality improvement provided by high energy phase sensitive imaging.


Asunto(s)
Mamografía , Fantasmas de Imagen , Dosis de Radiación , Radiometría/instrumentación , Procesamiento de Imagen Asistido por Computador
3.
J Xray Sci Technol ; 19(4): 509-19, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-25214383

RESUMEN

The goal of this preliminary study was to investigate the effects of x-ray beam hardening on the detective quantum efficiency (DQE) and the radiation dose of an inline x-ray imaging system. The ability to decrease the risk of harmful radiation to the patient without compromising the detection capability would more effectively balance the tradeoff between image quality and radiation dose, and therefore benefit the fields of diagnostic x-ray imaging, especially mammography. The DQE and the average glandular dose were both calculated under the same experimental conditions for a range of beam hardening levels, corresponding to no added beam hardening and two thicknesses each of Rhodium (Rh) and Molybdenum (Mo) filters. The dose calculation results demonstrate a reduction of 15% to 24% for the range of beam hardening levels. The comparison of all quantities comprising the DQE exhibit very close correlation between the results obtained without added beam hardening to the results corresponding to the range of beam hardening levels. For the specific experimental conditions utilized in this preliminary study, the results are an indication that the use of beam hardening holds the potential to reduce the radiation dose without decreasing the performance of the system. Future studies will seek to apply this method in a clinical environment and perform a comprehensive image quality evaluation, in an effort to further evaluate the potential of beam hardening to balance the tradeoff between dose and image quality.


Asunto(s)
Mamografía/métodos , Dosis de Radiación , Intensificación de Imagen Radiográfica/métodos , Modelos Teóricos , Fantasmas de Imagen
4.
IEEE Trans Biomed Eng ; 65(5): 1117-1123, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28829304

RESUMEN

The ability of microbubbles to benefit the imaging quality of high-energy in-line phase contrast as compared with conventional low-energy contact mode radiography was investigated. The study was conducted by comparing in-line phase contrast imaging with conventional contact-mode projection imaging under the same dose delivered to a phantom. A custom-designed phantom was employed to simulate a segment of human blood vessel injected with microbubble suspensions. The microbubbles were suspended in deionized water to obtain different volume concentrations. The area contrast-to-noise ratio (CNR) values corresponding to both imaging methods were measured for different microbubble volume concentrations. The phase contrast images were processed by phase-attenuation duality phase retrieval to preserve the imaging quality. Comparison of the resultant CNR values indicates that the microbubble suspension images deliver a higher CNR than the water-only image, with monotonically increasing trends between the CNR values and microbubble concentrations. Compared to low-energy conventional images of the microbubble suspensions, high-energy in-line phase contrast CNRs are lower at high concentrations and are comparable, even better than, at low concentrations. This result suggests that 1) the performance of copolymer-shell microbubble employed in this study as x-ray contrast agent is constrained by the detective quantum efficiency of the system and the attenuation properties of the shell materials, 2) the phase-attenuation duality phase retrieval method has the potential to preserve image quality for areas with low concentration of microbubbles, and 3) the selection of microbubble products as a phase contrast agent may follow criteria of minimizing the impact of absorption attenuation properties of the shells and maximizing the difference factor of electron densities.


Asunto(s)
Medios de Contraste/química , Microburbujas , Radiografía/métodos , Adulto , Vasos Coronarios/fisiología , Humanos , Modelos Cardiovasculares , Fantasmas de Imagen , Dosis de Radiación
5.
Phys Med Biol ; 62(24): 9357-9376, 2017 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-29161236

RESUMEN

The objective of this study was to quantitatively investigate the ability to distribute microbubbles along the interface between two tissues, in an effort to improve the edge and/or boundary features in phase contrast imaging. The experiments were conducted by employing a custom designed tissue simulating phantom, which also simulated a clinical condition where the ligand-targeted microbubbles are self-aggregated on the endothelium of blood vessels surrounding malignant cells. Four different concentrations of microbubble suspensions were injected into the phantom: 0%, 0.1%, 0.2%, and 0.4%. A time delay of 5 min was implemented before image acquisition to allow the microbubbles to become distributed at the interface between the acrylic and the cavity simulating a blood vessel segment. For comparison purposes, images were acquired using three system configurations for both projection and tomosynthesis imaging with a fixed radiation dose delivery: conventional low-energy contact mode, low-energy in-line phase contrast and high-energy in-line phase contrast. The resultant images illustrate the edge feature enhancements in the in-line phase contrast imaging mode when the microbubble concentration is extremely low. The quantitative edge-enhancement-to-noise ratio calculations not only agree with the direct image observations, but also indicate that the edge feature enhancement can be improved by increasing the microbubble concentration. In addition, high-energy in-line phase contrast imaging provided better performance in detecting low-concentration microbubble distributions.


Asunto(s)
Medios de Contraste , Imagenología Tridimensional/instrumentación , Microburbujas , Fantasmas de Imagen , Tomografía Computarizada por Rayos X/instrumentación , Humanos
6.
Phys Med Biol ; 59(9): N37-48, 2014 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-24732108

RESUMEN

The objective of this study was to demonstrate the potential benefits of using high energy x-rays for phase sensitive breast imaging through a comparison with conventional mammography imaging. We compared images of a contrast-detail phantom acquired on a prototype phase sensitive x-ray imaging system with images acquired on a commercial flat panel digital mammography unit. The phase contrast images were acquired using a micro-focus x-ray source with a 50 µm focal spot at 120 kVp and 4.5 mAs, with a magnification factor of 2.46 and a 50 µm pixel pitch. A phase attenuation duality-based phase retrieval algorithm that requires only a single phase contrast image was applied. Conventional digital mammography images were acquired at 27 kVp, 131 mAs and 28 kVp, 54 mAs. For the same radiation dose, both the observer study and signal-to-noise ratio (SNR)/figure of merit comparisons indicated a large improvement by the phase retrieved image as compared to the clinical system for the larger disc sizes, but the improvement was not enough to detect the smallest discs. Compared to the double dose image acquired with the clinical system, the observer study also indicated that the phase retrieved image provided improved detection capabilities for all disc sizes except the smallest discs. Thus the SNR improvement provided by phase contrast imaging is not yet enough to offset the noise reduction provided by the clinical system at the doubled dose level. However, the potential demonstrated by this study for high energy phase sensitive x-ray imaging to improve lesion detection and reduce radiation dose in mammography warrants further investigation of this technique.


Asunto(s)
Mamografía/métodos , Dosis de Radiación , Fantasmas de Imagen , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA