Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Med ; 30(4): 1001-1012, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454126

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy is an emerging strategy to improve treatment outcomes for recurrent high-grade glioma, a cancer that responds poorly to current therapies. Here we report a completed phase I trial evaluating IL-13Rα2-targeted CAR-T cells in 65 patients with recurrent high-grade glioma, the majority being recurrent glioblastoma (rGBM). Primary objectives were safety and feasibility, maximum tolerated dose/maximum feasible dose and a recommended phase 2 dose plan. Secondary objectives included overall survival, disease response, cytokine dynamics and tumor immune contexture biomarkers. This trial evolved to evaluate three routes of locoregional T cell administration (intratumoral (ICT), intraventricular (ICV) and dual ICT/ICV) and two manufacturing platforms, culminating in arm 5, which utilized dual ICT/ICV delivery and an optimized manufacturing process. Locoregional CAR-T cell administration was feasible and well tolerated, and as there were no dose-limiting toxicities across all arms, a maximum tolerated dose was not determined. Probable treatment-related grade 3+ toxicities were one grade 3 encephalopathy and one grade 3 ataxia. A clinical maximum feasible dose of 200 × 106 CAR-T cells per infusion cycle was achieved for arm 5; however, other arms either did not test or achieve this dose due to manufacturing feasibility. A recommended phase 2 dose will be refined in future studies based on data from this trial. Stable disease or better was achieved in 50% (29/58) of patients, with two partial responses, one complete response and a second complete response after additional CAR-T cycles off protocol. For rGBM, median overall survival for all patients was 7.7 months and for arm 5 was 10.2 months. Central nervous system increases in inflammatory cytokines, including IFNγ, CXCL9 and CXCL10, were associated with CAR-T cell administration and bioactivity. Pretreatment intratumoral CD3 T cell levels were positively associated with survival. These findings demonstrate that locoregional IL-13Rα2-targeted CAR-T therapy is safe with promising clinical activity in a subset of patients. ClinicalTrials.gov Identifier: NCT02208362 .


Asunto(s)
Glioblastoma , Glioma , Receptores Quiméricos de Antígenos , Humanos , Recurrencia Local de Neoplasia , Glioma/terapia , Linfocitos T , Glioblastoma/terapia , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos
2.
Cancer Discov ; 11(9): 2248-2265, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837065

RESUMEN

Chimeric antigen receptor (CAR) T cells mediate potent antigen-specific antitumor activity; however, their indirect effects on the endogenous immune system are not well characterized. Remarkably, we demonstrate that CAR T-cell treatment of mouse syngeneic glioblastoma (GBM) activates intratumoral myeloid cells and induces endogenous T-cell memory responses coupled with feed-forward propagation of CAR T-cell responses. IFNγ production by CAR T cells and IFNγ responsiveness of host immune cells are critical for tumor immune landscape remodeling to promote a more activated and less suppressive tumor microenvironment. The clinical relevance of these observations is supported by studies showing that human IL13Rα2-CAR T cells activate patient-derived endogenous T cells and monocytes/macrophages through IFNγ signaling and induce the generation of tumor-specific T-cell responses in a responding patient with GBM. These studies establish that CAR T-cell therapy has the potential to shape the tumor microenvironment, creating a context permissible for eliciting endogenous antitumor immunity. SIGNIFICANCE: Our findings highlight the critical role of IFNγ signaling for a productive CAR T-cell therapy in GBM. We establish that CAR T cells can activate resident myeloid populations and promote endogenous T-cell immunity, emphasizing the importance of host innate and adaptive immunity for CAR T-cell therapy of solid tumors.This article is highlighted in the In This Issue feature, p. 2113.


Asunto(s)
Glioblastoma/tratamiento farmacológico , Inmunoterapia Adoptiva , Interferón gamma/metabolismo , Células Mieloides/inmunología , Receptores Quiméricos de Antígenos/inmunología , Animales , Glioblastoma/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Microambiente Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Cancer Res ; 80(4): 709-718, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31806641

RESUMEN

The mTOR signaling is dysregulated prominently in human cancers including glioblastoma, suggesting mTOR as a robust target for therapy. Inhibitors of mTOR have had limited success clinically, however, in part because their mechanism of action is cytostatic rather than cytotoxic. Here, we tested three distinct mTOR kinase inhibitors (TORKi) PP242, KU-0063794, and sapanisertib against glioblastoma cells. All agents similarly decreased proliferation of glioblastoma cells, whereas PP242 uniquely induced apoptosis. Apoptosis induced by PP242 resulted from off-target cooperative inhibition of JAK2 and protein kinase C alpha (PKCα). Induction of apoptosis was also decreased by additional on-target inhibition of mTOR, due to induction of autophagy. As EGFR inhibitors can block PKCα, EGFR inhibitors erlotinib and osimertinib were tested separately in combination with the JAK2 inhibitor AZD1480. Combination therapy induced apoptosis of glioblastoma tumors in both flank and in patient-derived orthotopic xenograft models, providing a preclinical rationale to test analogous combinations in patients. SIGNIFICANCE: These findings identify PKCα and JAK2 as targets that drive apoptosis in glioblastoma, potentially representing a clinically translatable approach for glioblastoma.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Autofagia/efectos de los fármacos , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Clorhidrato de Erlotinib/farmacología , Clorhidrato de Erlotinib/uso terapéutico , Femenino , Glioblastoma/patología , Humanos , Indoles/farmacología , Indoles/uso terapéutico , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Ratones , Morfolinas/farmacología , Morfolinas/uso terapéutico , Proteína Quinasa C-alfa/antagonistas & inhibidores , Proteína Quinasa C-alfa/metabolismo , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas/farmacología , Purinas/uso terapéutico , Pirazoles/farmacología , Pirazoles/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Neuro Oncol ; 22(4): 457-469, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31678994

RESUMEN

BACKGROUND: The transcription factor signal transducer and activator of transcription 3 (STAT3) drives progression in glioblastoma (GBM), suggesting STAT3 as a therapeutic target. Surprisingly however, GBM cells generally show primary resistance to STAT3 blockade. METHODS: Human glioblastoma cell lines LN229, U87, SF767, and U373, and patient-derived xenografts (PDXs) GBM8 and GBM43 were used to evaluate epidermal growth factor receptor (EGFR) activation during STAT3 inhibition. Protein and gene expression experiments, protein stability assays, cytokine arrays, phospho-tyrosine arrays and EGFR-ligand protein arrays were performed on STAT3 inhibitor-treated cells. To evaluate antitumor activity, we administered a betacellulin (BTC)-neutralizing antibody alone and in combination with STAT3 inhibition. BTC is an EGFR ligand. We therefore treated mice with orthotopic xenografts using the third-generation EGFR inhibitor osimertinib, with or without STAT3 knockdown. RESULTS: We demonstrate that both small-molecule inhibitors and knockdown of STAT3 led to expression and secretion of the EGFR ligand BTC, resulting in activation of EGFR and subsequent downstream phosphorylation of nuclear factor-kappaB (NF-κB). Neutralizing antibody against BTC abrogated activation of both EGFR and NF-κB in response to inhibition of STAT3; with combinatorial blockade of STAT3 and BTC inducing apoptosis in GBM cells. Blocking EGFR and STAT3 together inhibited tumor growth, improving survival in mice bearing orthotopic GBM PDXs in vivo. CONCLUSION: These data reveal a feedback loop among STAT3, EGFR, and NF-κB that mediates primary resistance to STAT3 blockade and suggest strategies for therapeutic intervention.


Asunto(s)
Glioblastoma , Animales , Betacelulina , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Ratones , FN-kappa B/metabolismo , Fosforilación , Factor de Transcripción STAT3/metabolismo
5.
Cancer Immunol Res ; 7(5): 759-772, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30890531

RESUMEN

Improvements in the quality and fitness of chimeric antigen receptor (CAR)-engineered T cells, through CAR design or manufacturing optimizations, could enhance the therapeutic potential of CAR-T cells. One parameter influencing the effectiveness of CAR-T cell therapy is the differentiation status of the final product: CAR-T cells that are less-differentiated and less exhausted are more therapeutically effective. In the current study, we demonstrate that CAR-T cells expanded in IL15 (CAR-T/IL15) preserve a less-differentiated stem cell memory (Tscm) phenotype, defined by expression of CD62L+CD45RA+ CCR7+, as compared with cells cultured in IL2 (CAR-T/IL2). CAR-T/IL15 cells exhibited reduced expression of exhaustion markers, higher antiapoptotic properties, and increased proliferative capacity upon antigen challenge. Furthermore, CAR-T/IL15 cells exhibited decreased mTORC1 activity, reduced expression of glycolytic enzymes and improved mitochondrial fitness. CAR-T/IL2 cells cultured in rapamycin (mTORC1 inhibitor) shared phenotypic features with CAR-T/IL15 cells, suggesting that IL15-mediated reduction of mTORC1 activity is responsible for preserving the Tscm phenotype. CAR-T/IL15 cells promoted superior antitumor responses in vivo in comparison with CAR-T/IL2 cells. Inclusion of cytokines IL7 and/or IL21 in addition to IL15 reduced the beneficial effects of IL15 on CAR-T phenotype and antitumor potency. Our findings show that IL15 preserves the CAR-T cell Tscm phenotype and improves their metabolic fitness, which results in superior in vivo antitumor activity, thus opening an avenue that may improve future adoptive T-cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Interleucina-15/inmunología , Diana Mecanicista del Complejo 1 de la Rapamicina/inmunología , Células Madre/inmunología , Linfocitos T/trasplante , Animales , Línea Celular Tumoral , Humanos , Memoria Inmunológica , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Fenotipo , Linfocitos T/inmunología
7.
Cancer Cell ; 31(3): 424-435, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28292440

RESUMEN

Although signaling from phosphatidylinositol 3-kinase (PI3K) and AKT to mechanistic target of rapamycin (mTOR) is prominently dysregulated in high-grade glial brain tumors, blockade of PI3K or AKT minimally affects downstream mTOR activity in glioma. Allosteric mTOR inhibitors, such as rapamycin, incompletely block mTORC1 compared with mTOR kinase inhibitors (TORKi). Here, we compared RapaLink-1, a TORKi linked to rapamycin, with earlier-generation mTOR inhibitors. Compared with rapamycin and Rapalink-1, TORKi showed poor durability. RapaLink-1 associated with FKBP12, an abundant mTOR-interacting protein, enabling accumulation of RapaLink-1. RapaLink-1 showed better efficacy than rapamycin or TORKi, potently blocking cancer-derived, activating mutants of mTOR. Our study re-establishes mTOR as a central target in glioma and traces the failure of existing drugs to incomplete/nondurable inhibition of mTORC1.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Complejos Multiproteicos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Femenino , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Sirolimus/uso terapéutico , Proteína 1A de Unión a Tacrolimus/fisiología
8.
Cancer Res ; 75(20): 4302-11, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26282165

RESUMEN

High grade gliomas (HGG) are classified into four subgroups based on transcriptional signatures and phenotypic characteristics. In particular, the proneural-to-mesenchymal transition (PMT) is associated with increased malignancy, poor prognosis, and disease recurrence, but the underlying causes of PMT are still unclear. In this study, we investigated whether radiotherapy promotes PMT using a genetically engineered mouse model of proneural HGG. We found that cranial ionizing radiation induced robust and durable PMT in tumors. Additionally, we isolated primary proneural HGG cells from mouse and human tumors and demonstrate that radiation induced a sustained cell-intrinsic mesenchymal transition associated with increased invasiveness and resistance to the alkylating agent temozolomide. Expectedly, irradiation-induced PMT was also associated with activation of the STAT3 transcription factor, and the combination of STAT3 blockade using JAK2 inhibitors with radiation abrogated the mesenchymal transition and extended survival of mice. Taken together, our data suggest that clinical JAK2 inhibitors should be tested in conjunction with radiation in patients with proneural HGG as a new strategy for blocking the emergence of therapy-resistant mesenchymal tumors at relapse.


Asunto(s)
Glioma/metabolismo , Glioma/patología , Factor de Transcripción STAT3/antagonistas & inhibidores , Aloinjertos , Animales , Biomarcadores , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/radioterapia , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Células Madre Mesenquimatosas/efectos de la radiación , Ratones , Ratones Noqueados , Clasificación del Tumor , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Radiación , Factor de Transcripción STAT3/metabolismo
9.
Cell Rep ; 9(3): 1034-46, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25437558

RESUMEN

The development of targeted therapeutics for neuroblastoma, the third most common tumor in children, has been limited by a poor understanding of growth signaling mechanisms unique to the peripheral nerve precursors from which tumors arise. In this study, we combined genetics with gene-expression analysis in the peripheral sympathetic nervous system to implicate arginase 1 and GABA signaling in tumor formation in vivo. In human neuroblastoma cells, either blockade of ARG1 or benzodiazepine-mediated activation of GABA-A receptors induced apoptosis and inhibited mitogenic signaling through AKT and MAPK. These results suggest that ARG1 and GABA influence both neural development and neuroblastoma and that benzodiazepines in clinical use may have potential applications for neuroblastoma therapy.


Asunto(s)
Arginasa/genética , Neoplasias Encefálicas/genética , Terapia Molecular Dirigida , Neuroblastoma/genética , Sitios de Carácter Cuantitativo/genética , Receptores de GABA-A/genética , Animales , Apoptosis , Arginasa/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular , Cromosomas de los Mamíferos/genética , Regulación Neoplásica de la Expresión Génica , Estudios de Asociación Genética , Ligamiento Genético , Predisposición Genética a la Enfermedad , Humanos , Ratones , Análisis de Supervivencia , Ácido gamma-Aminobutírico/metabolismo
10.
Cancer Cell ; 24(4): 438-49, 2013 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-24135280

RESUMEN

EGFRvIII, a frequently occurring mutation in primary glioblastoma, results in a protein product that cannot bind ligand, but signals constitutively. Deducing how EGFRvIII causes transformation has been difficult because of autocrine and paracrine loops triggered by EGFRvIII alone or in heterodimers with wild-type EGFR. Here, we document coexpression of EGFR and EGFRvIII in primary human glioblastoma that drives transformation and tumorigenesis in a cell-intrinsic manner. We demonstrate enhancement of downstream STAT signaling triggered by EGFR-catalyzed phosphorylation of EGFRvIII, implicating EGFRvIII as a substrate for EGFR. Subsequent phosphorylation of STAT3 requires nuclear entry of EGFRvIII and formation of an EGFRvIII-STAT3 nuclear complex. Our findings clarify specific oncogenic signaling relationships between EGFR and EGFRvIII in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT5/metabolismo , Alelos , Línea Celular Tumoral , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Mutación , Trasplante de Neoplasias , Fosforilación , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA