Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 116(28): 14374-14383, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31239339

RESUMEN

Transplanted stromal cells have demonstrated considerable promise as therapeutic agents in diverse disease settings. Paracrine signaling can be an important mediator of these therapeutic effects at the sites of acute or persistent injury and inflammation. As many stromal cell types, including bone marrow-derived stromal cells (BMSCs), display tissue-specific responses, there is a need to explore their secretory dynamics in the context of tissue and injury type. Paracrine signals are not static, and could encode contextual dynamics in the kinetic changes of the concentrations of the secreted ligands. However, precise measurement of dynamic and context-specific cellular secretory signatures, particularly in adherent cells, remains challenging. Here, by creating an experimental and computational analysis platform, we reconstructed dynamic secretory signatures of cells based on a very limited number of time points. By using this approach, we demonstrate that the secretory signatures of CD133-positive BMSCs are uniquely defined by distinct biological contexts, including signals from injured cardiac cells undergoing oxidative stress, characteristic of cardiac infarction. Furthermore, we show that the mixture of recombinant factors reproducing the dynamics of BMSC-generated secretion can mediate a highly effective rescue of cells injured by oxidative stress and an improved cardiac output. These results support the importance of the dynamic multifactorial paracrine signals in mediating remedial effects of stromal stem cells, and pave the way for stem cell-inspired cell-free treatments of cardiac and other injuries.


Asunto(s)
Inflamación/genética , Células Madre Mesenquimatosas , Infarto del Miocardio/genética , Neovascularización Fisiológica/genética , Antígeno AC133/genética , Animales , Médula Ósea/metabolismo , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Diferenciación Celular/genética , Células Cultivadas , Humanos , Inflamación/metabolismo , Inflamación/patología , Ligandos , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Estrés Oxidativo/genética , Comunicación Paracrina/genética
2.
Proc Natl Acad Sci U S A ; 116(45): 22710-22720, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31641069

RESUMEN

Experimental autoimmune encephalomyelitis (EAE) is the most common model of multiple sclerosis (MS). This model has been instrumental in understanding the events that lead to the initiation of central nervous system (CNS) autoimmunity. Though EAE has been an effective screening tool for identifying novel therapies for relapsing-remitting MS, it has proven to be less successful in identifying therapies for progressive forms of this disease. Though axon injury occurs in EAE, it is rapid and acute, making it difficult to intervene for the purpose of evaluating neuroprotective therapies. Here, we describe a variant of spontaneous EAE in the 2D2 T cell receptor transgenic mouse (2D2+ mouse) that presents with hind-limb clasping upon tail suspension and is associated with T cell-mediated inflammation in the posterior spinal cord and spinal nerve roots. Due to the mild nature of clinical signs in this model, we were able to maintain cohorts of mice into middle age. Over 9 mo, these mice exhibited a relapsing-remitting course of hind-limb clasping with the development of progressive motor deficits. Using a combined approach of ex vivo magnetic resonance (MR) imaging and histopathological analysis, we observed neurological progression to associate with spinal cord atrophy, synapse degradation, and neuron loss in the gray matter, as well as ongoing axon injury in the white matter of the spinal cord. These findings suggest that mild EAE coupled with natural aging may be a solution to better modeling the neurodegenerative processes seen in MS.


Asunto(s)
Envejecimiento/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Miembro Posterior , Esclerosis Múltiple/patología , Animales , Sustancia Gris/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Esclerosis Múltiple/inmunología , PPAR alfa/genética , Sustancia Blanca/patología
3.
J Mol Cell Cardiol ; 127: 204-214, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30597148

RESUMEN

Over 5 million people in the United States suffer from heart failure, due to the limited ability to regenerate functional cardiac tissue. One potential therapeutic strategy is to enhance proliferation of resident cardiomyocytes. However, phenotypic screening for therapeutic agents is challenged by the limited ability of conventional markers to discriminate between cardiomyocyte proliferation and endoreplication (e.g. polyploidy and multinucleation). Here, we developed a novel assay that combines automated live-cell microscopy and image processing algorithms to discriminate between proliferation and endoreplication by quantifying changes in the number of nuclei, changes in the number of cells, binucleation, and nuclear DNA content. We applied this assay to further prioritize hits from a primary screen for DNA synthesis, identifying 30 compounds that enhance proliferation of human induced pluripotent stem cell-derived cardiomyocytes. Among the most active compounds from the phenotypic screen are clinically approved L-type calcium channel blockers from multiple chemical classes whose activities were confirmed across different sources of human induced pluripotent stem cell-derived cardiomyocytes. Identification of compounds that stimulate human cardiomyocyte proliferation may provide new therapeutic strategies for heart failure.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Proliferación Celular , ADN/biosíntesis , Humanos , Procesamiento de Imagen Asistido por Computador , Fenotipo , Ploidias
4.
Proc Natl Acad Sci U S A ; 113(6): E679-88, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26792522

RESUMEN

Collective cell responses to exogenous cues depend on cell-cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and little is known about how multicellular signal processing modulates single-cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored whether cell-cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow epidermal growth factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells.


Asunto(s)
Comunicación Celular , Morfogénesis , Animales , Cadherinas/metabolismo , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Comunicación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Simulación por Computador , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Iones , Ligandos , Glándulas Mamarias Animales/citología , Modelos Biológicos , Morfogénesis/efectos de los fármacos , Organoides/citología , Organoides/efectos de los fármacos , Ratas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA