Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38878778

RESUMEN

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Asunto(s)
Inflamación , Proteínas de la Membrana , Esclerosis Múltiple , Neuronas , Animales , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Proteínas de la Membrana/metabolismo , Neuronas/metabolismo , Neuronas/patología , Ratones , Humanos , Inflamación/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Transducción de Señal , Autofagia , Ratones Endogámicos C57BL , Ácido Glutámico/metabolismo , Ferroptosis , Modelos Animales de Enfermedad , Femenino , Masculino
2.
Nat Rev Neurosci ; 25(7): 493-513, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38789516

RESUMEN

Chronic low-grade inflammation and neuronal deregulation are two components of a smoldering disease activity that drives the progression of disability in people with multiple sclerosis (MS). Although several therapies exist to dampen the acute inflammation that drives MS relapses, therapeutic options to halt chronic disability progression are a major unmet clinical need. The development of such therapies is hindered by our limited understanding of the neuron-intrinsic determinants of resilience or vulnerability to inflammation. In this Review, we provide a neuron-centric overview of recent advances in deciphering neuronal response patterns that drive the pathology of MS. We describe the inflammatory CNS environment that initiates neurotoxicity by imposing ion imbalance, excitotoxicity and oxidative stress, and by direct neuro-immune interactions, which collectively lead to mitochondrial dysfunction and epigenetic dysregulation. The neuronal demise is further amplified by breakdown of neuronal transport, accumulation of cytosolic proteins and activation of cell death pathways. Continuous neuronal damage perpetuates CNS inflammation by activating surrounding glia cells and by directly exerting toxicity on neighbouring neurons. Further, we explore strategies to overcome neuronal deregulation in MS and compile a selection of neuronal actuators shown to impact neurodegeneration in preclinical studies. We conclude by discussing the therapeutic potential of targeting such neuronal actuators in MS, including some that have already been tested in interventional clinical trials.


Asunto(s)
Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Animales , Neuronas/patología , Neuronas/metabolismo , Inflamación/patología , Inflamación/metabolismo
3.
EMBO J ; 42(4): e112453, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36594364

RESUMEN

Synaptic dysfunction caused by soluble ß-amyloid peptide (Aß) is a hallmark of early-stage Alzheimer's disease (AD), and is tightly linked to cognitive decline. By yet unknown mechanisms, Aß suppresses the transcriptional activity of cAMP-responsive element-binding protein (CREB), a master regulator of cell survival and plasticity-related gene expression. Here, we report that Aß elicits nucleocytoplasmic trafficking of Jacob, a protein that connects a NMDA-receptor-derived signalosome to CREB, in AD patient brains and mouse hippocampal neurons. Aß-regulated trafficking of Jacob induces transcriptional inactivation of CREB leading to impairment and loss of synapses in mouse models of AD. The small chemical compound Nitarsone selectively hinders the assembly of a Jacob/LIM-only 4 (LMO4)/ Protein phosphatase 1 (PP1) signalosome and thereby restores CREB transcriptional activity. Nitarsone prevents impairment of synaptic plasticity as well as cognitive decline in mouse models of AD. Collectively, the data suggest targeting Jacob protein-induced CREB shutoff as a therapeutic avenue against early synaptic dysfunction in AD.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Ratones Transgénicos , Neuronas/metabolismo , Sinapsis/metabolismo
4.
Glia ; 72(8): 1451-1468, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38629411

RESUMEN

The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-ß (Aß) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aß have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aß3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aß3(pE)-42, but not Aß1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aß3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.


Asunto(s)
Péptidos beta-Amiloides , Astrocitos , Lisosomas , Astrocitos/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Lisosomas/metabolismo , Transducción de Señal/fisiología , Procesamiento Proteico-Postraduccional/fisiología , Endosomas/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Fragmentos de Péptidos/metabolismo , Ratones , Células Cultivadas , Humanos
5.
Alzheimers Dement ; 20(2): 1166-1174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37920945

RESUMEN

INTRODUCTION: We set out to identify tau PET-positive (A+T+) individuals among amyloid-beta (Aß) positive participants using plasma biomarkers. METHODS: In this cross-sectional study we assessed 234 participants across the AD continuum who were evaluated by amyloid PET with [18 F]AZD4694 and tau-PET with [18 F]MK6240 and measured plasma levels of total tau, pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers to predict tau positivity in Aß+ individuals. RESULTS: Highest associations with tau positivity in Aß+ individuals were found for plasma pTau-217 (AUC [CI95% ] = 0.89 [0.82, 0.96]) and NTA-tau (AUC [CI95% ] = 0.88 [0.91, 0.95]). Combining pTau-217 and NTA-tau resulted in the strongest agreement (Cohen's Kappa = 0.74, CI95%  = 0.57/0.90, sensitivity = 92%, specificity = 81%) with PET for classifying tau positivity. DISCUSSION: The potential for identifying tau accumulation in later Braak stages will be useful for patient stratification and prognostication in treatment trials and in clinical practice. HIGHLIGHTS: We found that in a cohort without pre-selection pTau-181, pTau-217, and NTA-tau showed the highest association with tau PET positivity. We found that in Aß+ individuals pTau-217 and NTA-tau showed the highest association with tau PET positivity. Combining pTau-217 and NTA-tau resulted in the strongest agreement with the tau PET-based classification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Proteínas tau , Estudios Transversales , Péptidos beta-Amiloides , Biomarcadores , Tomografía de Emisión de Positrones
6.
J Neuroinflammation ; 20(1): 278, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001539

RESUMEN

INTRODUCTION: Synaptic loss is closely associated with tau aggregation and microglia activation in later stages of Alzheimer's disease (AD). However, synaptic damage happens early in AD at the very early stages of tau accumulation. It remains unclear whether microglia activation independently causes synaptic cleavage before tau aggregation appears. METHODS: We investigated 104 participants across the AD continuum by measuring 14-3-3 zeta/delta ([Formula: see text]) as a cerebrospinal fluid biomarker for synaptic degradation, and fluid and imaging biomarkers of tau, amyloidosis, astrogliosis, neurodegeneration, and inflammation. We performed correlation analyses in cognitively unimpaired and impaired participants and used structural equation models to estimate the impact of microglia activation on synaptic injury in different disease stages. RESULTS: 14-3-3 [Formula: see text] was increased in participants with amyloid pathology at the early stages of tau aggregation before hippocampal volume loss was detectable. 14-3-3 [Formula: see text] correlated with amyloidosis and tau load in all participants but only with biomarkers of neurodegeneration and memory deficits in cognitively unimpaired participants. This early synaptic damage was independently mediated by sTREM2. At later disease stages, tau and astrogliosis additionally mediated synaptic loss. CONCLUSIONS: Our results advertise that sTREM2 is mediating synaptic injury at the early stages of tau accumulation, underlining the importance of microglia activation for AD disease propagation.


Asunto(s)
Enfermedad de Alzheimer , Amiloidosis , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Gliosis , Proteínas tau/metabolismo , Proteínas 14-3-3
7.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452829

RESUMEN

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Asunto(s)
COVID-19 , Disautonomías Primarias , Humanos , COVID-19/complicaciones , SARS-CoV-2 , Síndrome Post Agudo de COVID-19 , ARN Viral , Células Endoteliales , Inflamación , Disautonomías Primarias/etiología , Nervio Vago
8.
Eur J Neurol ; 30(8): 2297-2304, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37159495

RESUMEN

BACKGROUND AND PURPOSE: This study aimed to investigate if pre-existing neurological conditions, such as dementia and a history of cerebrovascular disease, increase the risk of severe outcomes including death, intensive care unit (ICU) admission and vascular events in patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in 2022, when Omicron was the predominant variant. METHODS: A retrospective analysis was conducted of all patients with SARS-CoV-2 infection, confirmed by polymerase chain reaction test, admitted to the University Medical Center Hamburg-Eppendorf from 20 December 2021 until 15 August 2022. In all, 1249 patients were included in the study. In-hospital mortality was 3.8% and the ICU admission rate was 9.9%. Ninety-three patients with chronic cerebrovascular disease and 36 patients with pre-existing all-cause dementia were identified and propensity score matching by age, sex, comorbidities, vaccination status and dexamethasone treatment was performed in a 1:4 ratio with patients without the respective precondition using nearest neighbor matching. RESULTS: Analysis revealed that neither pre-existing cerebrovascular disease nor all-cause dementia increased mortality or the risk for ICU admission. All-cause dementia in the medical history also had no effect on vascular complications under investigation. In contrast, an increased odds ratio for both pulmonary artery embolism and secondary cerebrovascular events was observed in patients with pre-existing chronic cerebrovascular disease and myocardial infarction in the medical history. CONCLUSION: These findings suggest that patients with pre-existing cerebrovascular disease and myocardial infarction in their medical history may be particularly susceptible to vascular complications following SARS-CoV-2 infection with presumed Omicron variant.


Asunto(s)
COVID-19 , Trastornos Cerebrovasculares , Infarto del Miocardio , Humanos , Estudios Retrospectivos , COVID-19/complicaciones , COVID-19/epidemiología , SARS-CoV-2 , Trastornos Cerebrovasculares/epidemiología
9.
J Immunol ; 205(11): 3001-3010, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33127821

RESUMEN

The voltage-gated proton channel Hv1 regulates proton fluxes across membranes, thereby influencing pH-dependent processes. Plasmacytoid dendritic cells (pDCs) require a particularly tight regulation of endosomal pH to ensure strong type I IFN secretion exclusively during infection, avoiding autoimmunity. However, whether Hv1 is important for pH control in pDCs is presently unknown. In this study, we show that mouse pDCs require Hv1 to achieve potent type I IFN responses after the recognition of foreign DNA by endosomal TLR9. Genetic disruption of Hvcn1, which encodes Hv1, impaired mouse pDC activation by CpG oligonucleotides in vitro and in vivo, reducing IFN-α secretion and the induction of IFN-stimulated genes. Mechanistically, Hvcn1 deficiency delayed endosomal acidification and enhanced intracellular reactive oxygen species production, consequently limiting protease activity and TLR9 signaling. Our study reveals a critical role of Hv1 during innate immune responses and places this channel as a key modulator of type I IFN production, the hallmark function of pDCs, commending Hv1 as an attractive target for modulating type I IFN-driven autoimmunity.


Asunto(s)
Células Dendríticas/metabolismo , Canales Iónicos/metabolismo , Receptor Toll-Like 9/metabolismo , Animales , Inmunidad Innata/fisiología , Interferón-alfa/metabolismo , Ratones , Ratones Endogámicos C57BL , Oligodesoxirribonucleótidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/fisiología
10.
Nat Commun ; 15(1): 9287, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39468055

RESUMEN

Mucosal-associated invariant T (MAIT) cells express semi-invariant T cell receptors (TCR) for recognizing bacterial and yeast antigens derived from riboflavin metabolites presented on the non-polymorphic MHC class I-related protein 1 (MR1). Neuroinflammation in multiple sclerosis (MS) is likely initiated by autoreactive T cells and perpetuated by infiltration of additional immune cells, but the precise role of MAIT cells in MS pathogenesis remains unknown. Here, we use experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, and find an accumulation of MAIT cells in the inflamed central nervous system (CNS) enriched for MAIT17 (RORγt+) and MAIT1/17 (T-bet+RORγt+) subsets with inflammatory and protective features. Results from transcriptome profiling and Nur77GFP reporter mice show that these CNS MAIT cells are activated via cytokines and TCR. Blocking TCR activation with an anti-MR1 antibody exacerbates EAE, whereas enhancing TCR activation with the cognate antigen, 5-(2-oxopropylideneamino)-6-D-ribitylaminouracil, ameliorates EAE severity, potentially via the induction of amphiregulin (AREG). In summary, our findings suggest that TCR-mediated MAIT cell activation is protective in CNS inflammation, likely involving an induction of AREG.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Activación de Linfocitos , Ratones Endogámicos C57BL , Células T Invariantes Asociadas a Mucosa , Receptores de Antígenos de Linfocitos T , Encefalomielitis Autoinmune Experimental/inmunología , Animales , Células T Invariantes Asociadas a Mucosa/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/inmunología , Ratones , Activación de Linfocitos/inmunología , Femenino , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/inmunología , Esclerosis Múltiple/inmunología , Sistema Nervioso Central/inmunología , Citocinas/metabolismo , Citocinas/inmunología , Ribitol/análogos & derivados , Ribitol/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Uracilo/análogos & derivados , Uracilo/farmacología
11.
Biol Sex Differ ; 15(1): 41, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750588

RESUMEN

BACKGROUND: Differences in immune responses between women and men are leading to a strong sex bias in the incidence of autoimmune diseases that predominantly affect women, such as multiple sclerosis (MS). MS manifests in more than twice as many women, making sex one of the most important risk factor. However, it is incompletely understood which genes contribute to sex differences in autoimmune incidence. To address that, we conducted a gene expression analysis in female and male human spleen and identified the transmembrane protein CD99 as one of the most significantly differentially expressed genes with marked increase in men. CD99 has been reported to participate in immune cell transmigration and T cell regulation, but sex-specific implications have not been comprehensively investigated. METHODS: In this study, we conducted a gene expression analysis in female and male human spleen using the Genotype-Tissue Expression (GTEx) project dataset to identify differentially expressed genes between women and men. After successful validation on protein level of human immune cell subsets, we assessed hormonal regulation of CD99 as well as its implication on T cell regulation in primary human T cells and Jurkat T cells. In addition, we performed in vivo assays in wildtype mice and in Cd99-deficient mice to further analyze functional consequences of differential CD99 expression. RESULTS: Here, we found higher CD99 gene expression in male human spleens compared to females and confirmed this expression difference on protein level on the surface of T cells and pDCs. Androgens are likely dispensable as the cause shown by in vitro assays and ex vivo analysis of trans men samples. In cerebrospinal fluid, CD99 was higher on T cells compared to blood. Of note, male MS patients had lower CD99 levels on CD4+ T cells in the CSF, unlike controls. By contrast, both sexes had similar CD99 expression in mice and Cd99-deficient mice showed equal susceptibility to experimental autoimmune encephalomyelitis compared to wildtypes. Functionally, CD99 increased upon human T cell activation and inhibited T cell proliferation after blockade. Accordingly, CD99-deficient Jurkat T cells showed decreased cell proliferation and cluster formation, rescued by CD99 reintroduction. CONCLUSIONS: Our results demonstrate that CD99 is sex-specifically regulated in healthy individuals and MS patients and that it is involved in T cell costimulation in humans but not in mice. CD99 could potentially contribute to MS incidence and susceptibility in a sex-specific manner.


The immune system protects us from bacterial and viral infections and impacts the outcome of many diseases. Thus, understanding immunological processes is crucial to unravel pathogenic mechanisms and to develop new therapeutic treatment options. Sex is a biological variable affecting immunity and it is known that females and males differ in their immunological responses. Women mount stronger immune responses leading to more rapid control of infections and greater vaccine efficacy compared to men. However, this enhanced immune responsiveness is accompanied by female preponderance and susceptibility to autoimmune diseases like systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis (MS). MS sex ratio varies around 2:1 to 3:1 with a steadily increasing incidence in female MS patients making sex one of the top risk factors for developing MS. However, the underlying biological mechanisms including sex hormones as well as genetic and epigenetic factors and their complex interplay remain largely unknown. Here, we discovered the gene and its encoded protein CD99 to be differentially expressed between women and men with men showing increased expression on many immune cell subsets including T cells. Since T cells are key contributors to MS pathogenesis, we examined the role of CD99 on T cells of healthy individuals and MS patients. We were able to identify CD99-mediated T cell regulation, which might contribute to sex differences in MS susceptibility and incidence indicating the importance to include sex as a biological variable. Of note, these differences were not reproduced in mice showing the necessity of functional research in humans.


Asunto(s)
Antígeno 12E7 , Esclerosis Múltiple , Caracteres Sexuales , Linfocitos T , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno 12E7/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Células Jurkat , Ratones Endogámicos C57BL , Ratones Noqueados , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/genética , Especificidad de la Especie , Bazo/metabolismo , Bazo/inmunología , Linfocitos T/metabolismo , Linfocitos T/inmunología
12.
Mol Neurodegener ; 19(1): 2, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-38185677

RESUMEN

BACKGROUND: Antibody-based immunoassays have enabled quantification of very low concentrations of phosphorylated tau (p-tau) protein forms in cerebrospinal fluid (CSF), aiding in the diagnosis of AD. Mass spectrometry enables absolute quantification of multiple p-tau variants within a single run. The goal of this study was to compare the performance of mass spectrometry assessments of p-tau181, p-tau217 and p-tau231 with established immunoassay techniques. METHODS: We measured p-tau181, p-tau217 and p-tau231 concentrations in CSF from 173 participants from the TRIAD cohort and 394 participants from the BioFINDER-2 cohort using both mass spectrometry and immunoassay methods. All subjects were clinically evaluated by dementia specialists and had amyloid-PET and tau-PET assessments. Bland-Altman analyses evaluated the agreement between immunoassay and mass spectrometry p-tau181, p-tau217 and p-tau231. P-tau associations with amyloid-PET and tau-PET uptake were also compared. Receiver Operating Characteristic (ROC) analyses compared the performance of mass spectrometry and immunoassays p-tau concentrations to identify amyloid-PET positivity. RESULTS: Mass spectrometry and immunoassays of p-tau217 were highly comparable in terms of diagnostic performance, between-group effect sizes and associations with PET biomarkers. In contrast, p-tau181 and p-tau231 concentrations measured using antibody-free mass spectrometry had lower performance compared with immunoassays. CONCLUSIONS: Our results suggest that while similar overall, immunoassay-based p-tau biomarkers are slightly superior to antibody-free mass spectrometry-based p-tau biomarkers. Future work is needed to determine whether the potential to evaluate multiple biomarkers within a single run offsets the slightly lower performance of antibody-free mass spectrometry-based p-tau quantification.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteínas Amiloidogénicas , Inmunoensayo , Espectrometría de Masas , Biomarcadores
13.
J Clin Invest ; 134(16)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-39145444

RESUMEN

A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.


Asunto(s)
Glucólisis , Inflamación , Neuronas , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Ratones , Humanos , Neuronas/metabolismo , Neuronas/patología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Esclerosis Múltiple/patología , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/genética , Ratones Noqueados , Transducción de Señal , Masculino , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología
14.
EBioMedicine ; 109: 105413, 2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39500009

RESUMEN

BACKGROUND: Blood-based disease staging across the Alzheimer's disease (AD) continuum holds the promise to identify individuals that profit from disease-modifying therapies. We set out to identify Braak V+ (Braak V and/or VI) tau PET-positive individuals within amyloid-ß (Aß)-positive individuals using plasma biomarkers. METHODS: In this cross-sectional study, we assessed 289 individuals from the TRIAD cohort and 306 individuals from the WRAP study across the AD continuum. The participants were evaluated by amyloid-PET with [18F]AZD4694 or [11C]PiB and tau-PET with [18F]MK6240 and measured plasma levels included total tau, phospho-tau isoforms (pTau) pTau-181, pTau-217, pTau-231, and N-terminal tau (NTA-tau). We evaluated the performances of plasma biomarkers using different analytic platforms to predict Braak V+ positivity in Aß+ individuals. FINDINGS: Highest associations with Braak V+ tau positivity in Aß+ individuals were found for plasma pTau-217+Janssen (AUC [CI95%] = 0.97 [0.94, 1.0]) and ALZpath pTau-217 (AUC [CI95%] = 0.93 [0.86, 1.0]) in TRIAD. Plasma ALZpath pTau-217 separated Braak V+ tau PET-positive individuals in the WRAP longitudinal study (AUC [CI95%] = 0.97 [0.94, 1.0]). INTERPRETATION: Thus, we demonstrate that using adjusted cut-offs, plasma pTau-217 identifies individuals with later Braak stage tau accumulation which will be helpful to stratify patients for treatments and clinical studies. FUNDING: This research is supported by the Weston Brain Institute, Canadian Institutes of Health Research (CIHR) [MOP-11-51-31; RFN 152985, 159815, 162303], Canadian Consortium of Neurodegeneration and Aging (CCNA; MOP-11-51-31 -team 1), the Alzheimer's Association [NIRG-12-92090, NIRP-12-259245], Brain Canada Foundation (CFI Project 34874; 33397), the Fonds de Recherche du Québec-Santé (FRQS; Chercheur Boursier, 2020-VICO-279314). P.R-N and SG are members of the CIHR-CCNA Canadian Consortium of Neurodegeneration in Aging. Colin J. Adair Charitable Foundation.

15.
Microbiol Spectr ; 11(1): e0410322, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475890

RESUMEN

In vitro data suggest the monoclonal antibody sotrovimab may have lost inhibitory capability against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant. We aimed to provide real-life data on clinical outcomes in hospitalized patients. We retrospectively analyzed patients who were treated at the University Medical Center Hamburg-Eppendorf, Germany, between December 2021 and June 2022. Out of all 1,254 patients, 185 were treated with sotrovimab: 147 patients received sotrovimab monotherapy, and 38 received combination treatment with sotrovimab and remdesivir. We compared in-hospital mortality for the different treatment regimens for patients treated on regular wards and the intensive care unit separately and performed propensity score matching by age, sex, comorbidities, immunosuppression, and additional dexamethasone treatment to select patients who did not receive antiviral treatment for comparison. No difference in in-hospital mortality was observed between any of the treatment groups and the respective control groups. These findings underline that sotrovimab adds no clinical benefit for hospitalized patients with SARS-CoV-2 Omicron variant infections. IMPORTANCE This study shows that among hospitalized patients with SARS-CoV-2 Omicron variant infection at risk of disease progression, treatment with sotrovimab alone or in combination with remdesivir did not decrease in-hospital mortality. These real-world clinical findings in combination with previous in vitro data about lacking neutralizing activity of sotrovimab against SARS-CoV-2 Omicron variant do not support sotrovimab as a treatment option in these patients.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios Retrospectivos , Puntaje de Propensión , Anticuerpos Neutralizantes
16.
Brain Commun ; 5(2): fcad092, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37038497

RESUMEN

Persistent somatic and neuropsychiatric symptoms have been frequently described in patients after infection with severe acute respiratory syndrome coronavirus 2 even after a benign clinical course of the acute infection during the early phases of the coronavirus severe acute respiratory syndrome coronavirus 2 pandemic and are part of Long COVID. The Omicron variant emerged in November 2021 and has rapidly become predominant due to its high infectivity and suboptimal vaccine cross-protection. The frequency of neuropsychiatric post-acute sequelae after infection with the severe acute respiratory syndrome coronavirus 2 Omicron and adequate vaccination status is not known. Here, we aimed to characterize post-acute symptoms in individuals with asymptomatic or mildly symptomatic breakthrough infection with severe acute respiratory syndrome coronavirus 2. These individuals had either proven infection with the Omicron variant (n = 157) or their infection occurred in 2022 where Omicron was the predominant variant of severe acute respiratory syndrome coronavirus 2 in Germany (n = 107). This monocentric cross-sectional study was conducted at the University Medical Center Hamburg-Eppendorf between 11 February 2022 and 11 April 2022. We employed questionnaires addressing self-reported somatic symptom burden (Somatic Symptom Scale 8) and neuropsychiatric symptoms including mood (Patient Health Questionnaire 2), anxiety (Generalized Anxiety Disorder 7), attention (Mindful Attention Awareness Scale) and fatigue (Fatigue Assessment Scale) in a cohort of hospital workers. Scores were compared between 175 individuals less than 4 weeks after positive testing for severe acute respiratory syndrome coronavirus 2, 88 individuals more than 4 weeks after positive testing and 87 severe acute respiratory syndrome coronavirus 2 uninfected controls. The majority (n = 313; 89.5%) of included individuals were vaccinated at least three times. After recovery from infection, no significant differences in scores assessing neuropsychiatric and somatic symptoms were detected between the three groups (severe acute respiratory syndrome coronavirus 2 uninfected controls, individuals less and more than 4 weeks after positive testing) independent of age, sex, preconditions and vaccination status. In addition, self-reported symptom burden did not significantly correlate with the number of vaccinations against severe acute respiratory syndrome coronavirus 2, time from recovery or the number of infections. Notably, in all three groups, the mean scores for each item of our questionnaire lay below the pathological threshold. Our data show that persistent neuropsychiatric and somatic symptoms after recovery from severe acute respiratory syndrome coronavirus 2 infection in fully vaccinated hospital workers do not occur more frequently than that in uninfected individuals. This will guide healthcare professionals in the clinical management of patients after recovery from breakthrough infections with severe acute respiratory syndrome coronavirus 2.

17.
Sci Adv ; 9(38): eadh1653, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37729408

RESUMEN

Migratory dendritic cells (migDCs) continuously patrol tissues and are activated by injury and inflammation. Extracellular adenosine triphosphate (ATP) is released by damaged cells or actively secreted during inflammation and increases migDC motility. However, the underlying molecular mechanisms by which ATP accelerates migDC migration is not understood. Here, we show that migDCs can be distinguished from other DC subsets and immune cells by their expression of the voltage-gated calcium channel subunit ß3 (Cavß3; CACNB3), which exclusively facilitates ATP-dependent migration in vitro and during tissue damage in vivo. By contrast, CACNB3 does not regulate lipopolysaccharide-dependent migration. Mechanistically, CACNB3 regulates ATP-dependent inositol 1,4,5-trisphophate receptor-controlled calcium release from the endoplasmic reticulum. This, in turn, is required for ATP-mediated suppression of adhesion molecules, their detachment, and initiation of migDC migration. Thus, Cacnb3-deficient migDCs have an impaired migration after ATP exposure. In summary, we identified CACNB3 as a master regulator of ATP-dependent migDC migration that controls tissue-specific immunological responses during injury and inflammation.


Asunto(s)
Adenosina Trifosfato , Canales de Calcio , Humanos , Transporte Biológico , Inflamación , Células Dendríticas
18.
J Infect Public Health ; 16(11): 1806-1812, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37741015

RESUMEN

BACKGROUND: Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic, the roll-out of vaccines and therapeutic agents, as well as the emergence of novel SARS-CoV-2 variants, have shown significant effects on disease severity. METHODS: Patients hospitalized at our center between January 2020 and April 2022 were attributed to subgroups depending on which SARS-CoV-2 variant was predominantly circulating in Germany: (i) Wild-type: January 1, 2020, to March 7, 2021, (ii) Alpha variant: August 3, 2021, to June 27, 2021, (iii) Delta variant: June 28, 2021, to December 26, 2021, and (iv) Omicron variant: December 27, 2021, to April 30, 2022. RESULTS: Between January 2020 and April 2022, 1500 patients with SARS-CoV-2 infections were admitted to the University Medical Center Hamburg-Eppendorf. The rate of patients who were admitted to the intensive care unit (ICU) decreased from 31.2% (n = 223) in the wild-type group, 28.5% (n = 72) in the Alpha variant group, 18.8% (n = 67) in the Delta variant group, and 13.4% (n = 135) in the Omicron variant group. Also, in-hospital mortality decreased from 20.6% (n = 111) in the wild-type group, 17.5% (n = 30) in the Alpha variant group, 16.8% (n = 33) in the Delta variant group, and 6.6% (n = 39) in the Omicron variant group. The median duration of hospitalization was similar in all subgroups and ranged between 11 and 15 days throughout the pandemic. CONCLUSIONS: In-hospital mortality and rate of ICU admission among hospitalized COVID-19 patients steadily decreased throughout the pandemic. However, the practically unchanged duration of hospitalization demonstrates the persistent burden of COVID-19 on the healthcare system.

19.
Sci Rep ; 12(1): 21089, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36473905

RESUMEN

The accurate assessment of cerebrospinal fluid opening pressure during spinal puncture provides important medical information in diagnosis, prognosis and therapy of several neurological conditions. However, purpose-specific spinal needle choice is debated. While atraumatic needles are associated with lower incidence of post-puncture headache and re-hospitalisation, some clinicians believe that they lack in accuracy of CSF opening pressure assessment. Our primary objective was to investigate different needle types on correctly assessing CSF opening pressure. We compared typical clinically utilised traumatic (0.9 mm outer diameter) and atraumatic (0.7 mm; 0.45 mm) spinal needles with regards to the assessment of the opening pressure in an experimental spinal puncture model testing experimental and cerebrospinal fluids in predefined pressures. Our goal was to measure the time until indicated pressure levels were correctly shown. Atraumatic needles of at least 0.7 mm diameter had a similar accuracy as traumatic needles without significant differences in time-to-equilibrium. These results were independent of protein and glucose concentration and the presence of haemoglobin. This study demonstrates that atraumatic needles can be used to accurately measure CSF opening pressure. This knowledge might guide clinicians in their choice of needle and help to reduce post-puncture headaches and re-hospitalisation.

20.
Sci Adv ; 8(31): eabm5500, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35930635

RESUMEN

Neuroinflammation leads to neuronal stress responses that contribute to neuronal dysfunction and loss. However, treatments that stabilize neurons and prevent their destruction are still lacking. Here, we identify the histone methyltransferase G9a as a druggable epigenetic regulator of neuronal vulnerability to inflammation. In murine experimental autoimmune encephalomyelitis (EAE) and human multiple sclerosis (MS), we found that the G9a-catalyzed repressive epigenetic mark H3K9me2 was robustly induced by neuroinflammation. G9a activity repressed anti-ferroptotic genes, diminished intracellular glutathione levels, and triggered the iron-dependent programmed cell death pathway ferroptosis. Conversely, pharmacological treatment of EAE mice with a G9a inhibitor restored anti-ferroptotic gene expression, reduced inflammation-induced neuronal loss, and improved clinical outcome. Similarly, neuronal anti-ferroptotic gene expression was reduced in MS brain tissue and was boosted by G9a inhibition in human neuronal cultures. This study identifies G9a as a critical transcriptional enhancer of neuronal ferroptosis and potential therapeutic target to counteract inflammation-induced neurodegeneration.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Ferroptosis , Esclerosis Múltiple , Animales , Encefalomielitis Autoinmune Experimental/genética , Ferroptosis/genética , Regulación de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Inflamación/genética , Ratones , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA