Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Brain Behav Immun ; 109: 127-138, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36681359

RESUMEN

In the medial prefrontal cortex (PFC), chronic stress reduces synaptic expression of glutamate receptors, leading to decreased excitatory signaling from layer V pyramidal neurons and working memory deficits. One key element driving these changes is a reduction in brain-derived neurotrophic factor (BDNF) signaling. BDNF is a potent mediator of synaptic growth and deficient BDNF signaling has been linked to stress susceptibility. Prior studies indicated that neurons are the primary source of BDNF, but more recent work suggests that microglia are also an important source of BDNF. Adding to this, our work showed that 14 days of chronic unpredictable stress (CUS) reduced Bdnf transcript in PFC microglia, evincing its relevance in the effects of stress. To explore this further, we utilized transgenic mice with microglia-specific depletion of BDNF (Cx3cr1Cre/+:Bdnffl/fl) and genotype controls (Cx3cr1Cre/+:Bdnf+/+). In the following experiments, mice were exposed to a shortened CUS paradigm (7 days) to determine if microglial Bdnf depletion promotes stress susceptibility. Analyses of PFC microglia revealed that Cx3cr1Cre/+:Bdnffl/fl mice had shifts in phenotypic markers and gene expression. In a separate cohort, synaptoneurosomes were collected from the PFC and western blotting was performed for synaptic markers. These experiments showed that Cx3cr1Cre/+:Bdnffl/fl mice had baseline deficits in GluN2B, and that 7 days of CUS additionally reduced GluN2A levels in Cx3cr1Cre/+:Bdnffl/fl mice, but not genotype controls. Behavioral and cognitive testing showed that this coincided with exacerbated stress effects on temporal object recognition in Cx3cr1Cre/+:Bdnffl/fl mice. These results indicate that microglial BDNF promotes glutamate receptor expression in the PFC. As such, mice with deficient microglial BDNF had increased susceptibility to the behavioral and cognitive consequences of stress.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Microglía , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Humanos
3.
J Neuroinflammation ; 18(1): 258, 2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34742308

RESUMEN

Microglia are emerging as critical regulators of neuronal function and behavior in nearly every area of neuroscience. Initial reports focused on classical immune functions of microglia in pathological contexts, however, immunological concepts from these studies have been applied to describe neuro-immune interactions in the absence of disease, injury, or infection. Indeed, terms such as 'microglia activation' or 'neuroinflammation' are used ubiquitously to describe changes in neuro-immune function in disparate contexts; particularly in stress research, where these terms prompt undue comparisons to pathological conditions. This creates a barrier for investigators new to neuro-immunology and ultimately hinders our understanding of stress effects on microglia. As more studies seek to understand the role of microglia in neurobiology and behavior, it is increasingly important to develop standard methods to study and define microglial phenotype and function. In this review, we summarize primary research on the role of microglia in pathological and physiological contexts. Further, we propose a framework to better describe changes in microglia1 phenotype and function in chronic stress. This approach will enable more precise characterization of microglia in different contexts, which should facilitate development of microglia-directed therapeutics in psychiatric and neurological disease.


Asunto(s)
Homeostasis , Microglía , Enfermedades Neuroinflamatorias , Estrés Fisiológico , Terminología como Asunto , Animales , Humanos , Semántica
4.
Neuropsychopharmacology ; 48(9): 1347-1357, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36517583

RESUMEN

Chronic unpredictable stress (CUS) drives microglia-mediated neuronal remodeling and synapse loss in the prefrontal cortex (PFC), contributing to deficits in cognition and behavior. However, it remains unclear what mechanisms guide microglia-neuron interactions in stress. Evidence indicates that neuronal activity-dependent purinergic signaling directs microglial processes and synaptic engagement via P2Y12, a purinergic receptor exclusively expressed by microglia in the brain. Stress alters excitatory neurotransmission in the PFC, thus we aimed to determine if P2Y12 signaling promotes functional changes in microglia in chronic stress. Here we used genetic ablation of P2Y12 (P2ry12-/-) or pharmacological blockade (clopidogrel, ticagrelor) to examine the role of purinergic signaling in stress-induced microglia-neuron interaction. Multiple behavioral, physiological, and cytometric endpoints were analyzed. Deletion of P2Y12 led to a number of fundamental alterations in the PFC, including the heightened microglial number and increased dendritic spine density. Flow cytometry revealed that microglia in P2ry12-/- mice had shifts in surface levels of CX3CR1, CSF1R, and CD11b, suggesting changes in synaptic engagement and phagocytosis in the PFC. In line with this, pharmacological blockade of P2Y12 prevented CUS-induced increases in the proportion of microglia with neuronal inclusions, limited dendritic spine loss in the PFC, and attenuated alterations in stress coping behavior and working memory function. Overall, these findings indicate that microglial P2Y12 is a critical mediator of stress-induced synapse loss in the PFC and subsequent behavioral deficits.


Asunto(s)
Encéfalo , Microglía , Ratones , Animales , Corteza Prefrontal , Neuronas , Sinapsis
5.
Neuropsychopharmacology ; 48(9): 1257-1266, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37015972

RESUMEN

Serotonergic psychedelics are gaining increasing interest as potential therapeutics for a range of mental illnesses. Compounds with short-lived subjective effects may be clinically useful because dosing time would be reduced, which may improve patient access. One short-acting psychedelic is 5-MeO-DMT, which has been associated with improvement in depression and anxiety symptoms in early phase clinical studies. However, relatively little is known about the behavioral and neural mechanisms of 5-MeO-DMT, particularly the durability of its long-term effects. Here we characterized the effects of 5-MeO-DMT on innate behaviors and dendritic architecture in mice. We showed that 5-MeO-DMT induces a dose-dependent increase in head-twitch response that is shorter in duration than that induced by psilocybin at all doses tested. 5-MeO-DMT also substantially suppresses social ultrasonic vocalizations produced during mating behavior. 5-MeO-DMT produces long-lasting increases in dendritic spine density in the mouse medial frontal cortex that are driven by an elevated rate of spine formation. However, unlike psilocybin, 5-MeO-DMT did not affect the size of dendritic spines. These data provide insights into the behavioral and neural consequences underlying the action of 5-MeO-DMT and highlight similarities and differences with those of psilocybin.


Asunto(s)
Alucinógenos , Trastornos Mentales , Ratones , Animales , Psilocibina , Instinto , Metoxidimetiltriptaminas/farmacología , Trastornos Mentales/tratamiento farmacológico
6.
Neurobiol Stress ; 14: 100312, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33748354

RESUMEN

Emerging evidence indicates that males and females display different neurobiological responses to chronic stress which contribute to varied behavioral adaptations. In particular, pyramidal neurons undergo dendritic atrophy and synapse loss in the prefrontal cortex (PFC) of male, but not female, mice. Our recent work shows that chronic stress also provokes microglia-mediated neuronal remodeling, which contributes to synaptic deficits in the PFC and associated behavioral consequences in males. Separate studies indicate that chronic stress promotes astrocyte dystrophy in the PFC which is associated with behavioral despair. Notably, these prior reports focused primarily on stress effects in males. In the present studies, male and female mice were exposed to 14 or 28 days of chronic unpredictable stress (CUS) to assess molecular and cellular adaptations of microglia, astrocytes, and neurons in the medial PFC. Consistent with our recent work, male, but not female, mice displayed behavioral and cognitive deficits with corresponding perturbations of neuroimmune factors in the PFC after 14 days of CUS. Fluorescence-activated cell sorting and gene expression analyses revealed that CUS increased expression of select markers of phagocytosis in male PFC microglia. Confocal imaging in Thy1-GFP(M) mice showed that CUS reduced dendritic spine density, decreased GFAP immunolabeling, and increased microglia-mediated neuronal remodeling only in male mice. After 28 days of CUS, both male and female mice displayed behavioral and cognitive impairments. Interestingly, there were limited stress effects on neuroimmune factors and measures of microglial phagocytosis in the PFC of both sexes. Despite limited changes in neuroimmune function, reduced GFAP immunolabeling and dendritic spine deficits persisted in male mice. Further, GFAP immunolabeling and dendritic spine density remained unaltered in the PFC of females. These findings indicate that chronic stress causes sex-specific and temporally dynamic changes in microglial function which are associated with different neurobiological and behavioral adaptations. In all, these results suggest that microglia-mediated neuronal remodeling, astrocyte dystrophy, and synapse loss contribute to stress-induced PFC dysfunction and associated behavioral consequences in male mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA