Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34504017

RESUMEN

Pharmacological treatment of gliomas and other brain-infiltrating tumors remains challenging due to limited delivery of most therapeutics across the blood-brain barrier (BBB). Transcranial MRI-guided focused ultrasound (FUS), an emerging technology for noninvasive brain treatments, enables transient opening of the BBB through acoustic activation of circulating microbubbles. Here, we evaluate the safety and utility of transcranial microbubble-enhanced FUS (MB-FUS) for spatially targeted BBB opening in patients with infiltrating gliomas. In this Phase 0 clinical trial (NCT03322813), we conducted comparative and quantitative analyses of FUS exposures (sonications) and their effects on gliomas using MRI, histopathology, microbubble acoustic emissions (harmonic dose [HD]), and fluorescence-guided surgery metrics. Contrast-enhanced MRI and histopathology indicated safe and reproducible BBB opening in all patients. These observations occurred using a power cycling closed feedback loop controller, with the power varying by nearly an order of magnitude on average. This range underscores the need for monitoring and titrating the exposure on a patient-by-patient basis. We found a positive correlation between microbubble acoustic emissions (HD) and MR-evident BBB opening (P = 0.07) and associated interstitial changes (P < 0.01), demonstrating the unique capability to titrate the MB-FUS effects in gliomas. Importantly, we identified a 2.2-fold increase of fluorescein accumulation in MB-FUS-treated compared to untreated nonenhancing tumor tissues (P < 0.01) while accounting for vascular density. Collectively, this study demonstrates the capabilities of MB-FUS for safe, localized, controlled BBB opening and highlights the potential of this technology to improve the surgical and pharmacologic treatment of brain tumors.


Asunto(s)
Barrera Hematoencefálica/fisiología , Sistemas de Liberación de Medicamentos/métodos , Terapia por Ultrasonido/métodos , Adulto , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/fisiología , Estudios de Factibilidad , Femenino , Glioma/fisiopatología , Glioma/terapia , Humanos , Masculino , Microburbujas , Sonicación/métodos
2.
Mol Pharm ; 20(1): 314-330, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36374573

RESUMEN

Triple-negative breast cancer (TNBC) patients with brain metastasis (BM) face dismal prognosis due to the limited therapeutic efficacy of the currently available treatment options. We previously demonstrated that paclitaxel-loaded PLGA-PEG nanoparticles (NPs) directed to the Fn14 receptor, termed "DARTs", are more efficacious than Abraxane─an FDA-approved paclitaxel nanoformulation─following intravenous delivery in a mouse model of TNBC BM. However, the precise basis for this difference was not investigated. Here, we further examine the utility of the DART drug delivery platform in complementary xenograft and syngeneic TNBC BM models. First, we demonstrated that, in comparison to nontargeted NPs, DART NPs exhibit preferential association with Fn14-positive human and murine TNBC cell lines cultured in vitro. We next identified tumor cells as the predominant source of Fn14 expression in the TNBC BM-immune microenvironment with minimal expression by microglia, infiltrating macrophages, monocytes, or lymphocytes. We then show that despite similar accumulation in brains harboring TNBC tumors, Fn14-targeted DARTs exhibit significant and specific association with Fn14-positive TNBC cells compared to nontargeted NPs or Abraxane. Together, these results indicate that Fn14 expression primarily by tumor cells in TNBC BMs enables selective DART NP delivery to these cells, likely driving the significantly improved therapeutic efficacy observed in our prior work.


Asunto(s)
Neoplasias Encefálicas , Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Microambiente Tumoral
3.
Cancer Immunol Immunother ; 71(8): 1813-1822, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35020009

RESUMEN

Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Adulto , Niño , Humanos , Evasión Inmune , Inmunoterapia , Microambiente Tumoral
4.
J Neurooncol ; 157(2): 221-236, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35235137

RESUMEN

BACKGROUND: Focused ultrasound (FUS) is an emerging technology, offering the capability of tuning and prescribing thermal and mechanical treatments within the brain. While early works in utilizing this technology have mainly focused on maximizing the delivery of therapeutics across the blood-brain barrier (BBB), the potential therapeutic impact of FUS-induced controlled thermal and mechanical stress to modulate anti-tumor immunity is becoming increasingly recognized. OBJECTIVE: To better understand the roles of FUS-mediated thermal and mechanical stress in promoting anti-tumor immunity in central nervous system tumors, we performed a comprehensive literature review on focused ultrasound-mediated immunomodulation and immunotherapy in brain tumors. METHODS: First, we summarize the current clinical experience with immunotherapy. Then, we discuss the unique and distinct immunomodulatory effects of the FUS-mediated thermal and mechanical stress in the brain tumor-immune microenvironment. Finally, we highlight recent findings that indicate that its combination with immune adjuvants can promote robust responses in brain tumors. RESULTS: Along with the rapid advancement of FUS technologies into recent clinical trials, this technology through mild-hyperthermia, thermal ablation, mechanical perturbation mediated by microbubbles, and histotripsy each inducing distinct vascular and immunological effects, is offering the unique opportunity to improve immunotherapeutic trafficking and convert immunologically "cold" tumors into immunologically "hot" ones that are prone to generate prolonged anti-tumor immune responses. CONCLUSIONS: While FUS technology is clearly accelerating concepts for new immunotherapeutic combinations, additional parallel efforts to detail rational therapeutic strategies supported by rigorous preclinical studies are still in need to leverage potential synergies of this technology with immune adjuvants. This work will accelerate the discovery and clinical implementation of new effective FUS immunotherapeutic combinations for brain tumor patients.


Asunto(s)
Neoplasias Encefálicas , Terapia por Ultrasonido , Barrera Hematoencefálica , Neoplasias Encefálicas/terapia , Sistemas de Liberación de Medicamentos , Humanos , Inmunidad , Inmunomodulación , Inmunoterapia , Estrés Mecánico , Microambiente Tumoral
5.
Glia ; 69(9): 2059-2076, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33638562

RESUMEN

Gliomas are the most common primary intrinsic brain tumors occurring in adults. Of all malignant gliomas, glioblastoma (GBM) is considered the deadliest tumor type due to diffuse brain invasion, immune evasion, cellular, and molecular heterogeneity, and resistance to treatments resulting in high rates of recurrence. An extensive understanding of the genomic and microenvironmental landscape of gliomas gathered over the past decade has renewed interest in pursuing novel therapeutics, including immune checkpoint inhibitors, glioma-associated macrophage/microglia (GAMs) modulators, and others. In light of this, predictive animal models that closely recreate the conditions and findings found in human gliomas will serve an increasingly important role in identifying new, effective therapeutic strategies. Although numerous syngeneic, xenograft, and transgenic rodent models have been developed, few include the full complement of pathobiological features found in human tumors, and therefore few accurately predict bench-to-bedside success. This review provides an update on how genetically engineered rodent models based on the replication-competent avian-like sarcoma (RCAS) virus/tumor virus receptor-A (tv-a) system have been used to recapitulate key elements of human gliomas in an immunologically intact host microenvironment and highlights new approaches using this model system as a predictive tool for advancing translational glioma research.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Glioma , Sarcoma , Animales , Virus del Sarcoma Aviar/genética , Neoplasias Encefálicas/patología , Glioma/patología , Humanos , Virus Oncogénicos , Receptores Virales , Microambiente Tumoral
6.
Glia ; 69(9): 2199-2214, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33991013

RESUMEN

High-grade gliomas (HGGs) are aggressive, treatment-resistant, and often fatal human brain cancers. The TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) signaling axis is involved in tissue repair after injury and constitutive signaling has been implicated in the pathogenesis of numerous solid cancers. The Fn14 gene is expressed at low levels in the normal, uninjured brain but is highly expressed in primary isocitrate dehydrogenase wild-type and recurrent HGGs. Fn14 signaling is implicated in numerous aspects of glioma biology including brain invasion and chemotherapy resistance, but whether Fn14 overexpression can directly promote tumor malignancy has not been reported. Here, we used the replication-competent avian sarcoma-leukosis virus/tumor virus A system to examine the impact of Fn14 expression on glioma development and pathobiology. We found that the sole addition of Fn14 to an established oncogenic cocktail previously shown to generate proneural-like gliomas led to the development of highly invasive and lethal brain cancer with striking biological features including extensive pseudopalisading necrosis, constitutive canonical and noncanonical NF-κB pathway signaling, and high plasminogen activator inhibitor-1 (PAI-1) expression. Analyses of HGG patient datasets revealed that high human PAI-1 gene (SERPINE1) expression correlates with shorter patient survival, and that the SERPINE1 and Fn14 (TNFRSF12A) genes are frequently co-expressed in bulk tumor tissues, in tumor subregions, and in malignant cells residing in the tumor microenvironment. These findings provide new insights into the potential importance of Fn14 in human HGG pathobiology and designate both the NF-κB signaling node and PAI-1 as potential targets for therapeutic intervention. MAIN POINTS: This work demonstrates that elevated levels of the TWEAK receptor Fn14 in tumor-initiating, neural progenitor cells leads to the transformation of proneural-like gliomas into more aggressive and lethal tumors that exhibit constitutive NF-κB pathway activation and plasminogen activator inhibitor-1 overexpression.


Asunto(s)
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Factores de Crecimiento de Fibroblastos , Glioma/patología , Humanos , Invasividad Neoplásica , Receptores del Factor de Necrosis Tumoral/genética , Receptores del Factor de Necrosis Tumoral/metabolismo , Receptor de TWEAK , Microambiente Tumoral
7.
Nanomedicine ; 20: 102024, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31176045

RESUMEN

Therapeutic efficacy of nanoparticle-drug formulations for cancer applications is significantly impacted by the extent of intra-tumoral accumulation and tumor tissue penetration. We advanced the application of surface plasmon resonance to examine interfacial properties of various clinical and emerging nanoparticles related to tumor tissue penetration. We observed that amine-terminated or positively-charged dendrimers and liposomes bound strongly to tumor extracellular matrix (ECM) proteins, whereas hydroxyl/carboxyl-terminated dendrimers and PEGylated/neutrally-charged liposomes did not bind. In addition, poly(lactic-co-glycolic acid) (PLGA) nanoparticles formulated with cholic acid or F127 surfactants bound strongly to tumor ECM proteins, whereas nanoparticles formulated with poly(vinyl alcohol) did not bind. Unexpectedly, following blood serum incubation, this binding increased and particle transport in ex vivo tumor tissues reduced markedly. Finally, we characterized the protein corona on PLGA nanoparticles using quantitative proteomics. Through these studies, we identified valuable criteria for particle surface characteristics that are likely to mediate their tissue binding and tumor penetration.


Asunto(s)
Nanopartículas/química , Neoplasias/metabolismo , Resonancia por Plasmón de Superficie , Animales , Transporte Biológico , Proteínas Sanguíneas/metabolismo , Línea Celular Tumoral , Dendrímeros/química , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Liposomas , Ratones Desnudos , Nanopartículas/ultraestructura , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Unión Proteica , Corona de Proteínas/química , Propiedades de Superficie , Tensoactivos/química
8.
J Neurooncol ; 140(3): 497-507, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30132163

RESUMEN

INTRODUCTION: Emerging evidence suggests that effective treatment of glioblastoma (GBM), the most common and deadly form of adult primary brain cancer, will likely require concurrent treatment of multiple aspects of tumor pathobiology to overcome tumor heterogeneity and the complex tumor-supporting microenvironment. Recent studies in non-central nervous system (CNS) tumor cells have demonstrated that oxaliplatin (OXA) can induce multi-faceted anti-tumor effects, in particular at drug concentrations below those required to induce apoptosis. These findings motivated re-investigation of OXA for the treatment of GBM. METHODS: The effects of OXA on murine KR158 and GL261 glioma cells including cell growth, cell death, inhibition of signal transducer and activator of transcription (STAT) activity, O-6-methylguanine-DNA methyltransferase (MGMT) expression, and immunogenic cell death (ICD) initiation, were evaluated by cytotoxicity assays, Western blot analysis, STAT3-luciferase reporter assays, qRT-PCR assays, and flow cytometry. Chemical inhibitors of endoplasmic reticulum (ER) stress were used to investigate the contribution of this cell damage response to the observed OXA effects. The effect of OXA on bone marrow-derived macrophages (BMDM) exposed to glioma conditioned media (GCM) was also analyzed by Western blot analysis. RESULTS: We identified the OXA concentration threshold for induction of apoptosis and from this determined the drug dose and treatment period for sub-cytotoxic treatments of glioma cells. Under these experimental conditions, OXA reduced STAT3 activity, reduced MGMT levels and increased temozolomide sensitivity. In addition, there was evidence of immunogenic cell death (elevated EIF2α phosphorylation and calreticulin exposure) following prolonged OXA treatment. Notably, inhibition of ER stress reversed the OXA-mediated inhibition of STAT3 activity and MGMT expression in the tumor cells. In BMDMs exposed to GCM, OXA also reduced levels of phosphorylated STAT3 and decreased expression of Arginase 1, an enzyme known to contribute to pro-tumor functions in the tumor-immune environment. CONCLUSIONS: OXA can induce notable multi-faceted biological effects in glioma cells and BMDMs at relatively low drug concentrations. These findings may have significant therapeutic relevance against GBM and warrant further investigation.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , Macrófagos/metabolismo , Oxaliplatino/farmacología , Animales , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Estrés del Retículo Endoplásmico , Glioma/tratamiento farmacológico , Humanos , Macrófagos/efectos de los fármacos , Ratones , Factor de Transcripción STAT3/metabolismo , Temozolomida
9.
J Neurooncol ; 138(2): 241-250, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29453678

RESUMEN

The TNF receptor superfamily member Fn14 is overexpressed by many solid tumor types, including glioblastoma (GBM), the most common and lethal form of adult brain cancer. GBM is notable for a highly infiltrative growth pattern and several groups have reported that high Fn14 expression levels can increase tumor cell invasiveness. We reported previously that the mesenchymal and proneural GBM transcriptomic subtypes expressed the highest and lowest levels of Fn14 mRNA, respectively. Given the recent histopathological re-classification of human gliomas by the World Health Organization based on isocitrate dehydrogenase 1 (IDH1) gene mutation status, we extended this work by comparing Fn14 gene expression in IDH1 wild-type (WT) and mutant (R132H) gliomas and in cell lines engineered to overexpress the IDH1 R132H enzyme. We found that both low-grade and high-grade (i.e., GBM) IDH1 R132H gliomas exhibit low Fn14 mRNA and protein levels compared to IDH1 WT gliomas. Forced overexpression of the IDH1 R132H protein in glioma cells reduced Fn14 expression, while treatment of IDH1 R132H-overexpressing cells with the IDH1 R132H inhibitor AGI-5198 or the DNA demethylating agent 5-aza-2'-deoxycytidine increased Fn14 expression. These results support a role for Fn14 in the more aggressive and invasive phenotype associated with IDH1 WT tumors and indicate that the low levels of Fn14 gene expression noted in IDH1 R132H mutant gliomas may be due to epigenetic regulation via changes in DNA methylation.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Glioma/metabolismo , Mutación , Receptor de TWEAK/metabolismo , Biomarcadores de Tumor/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Citocina TWEAK/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Isocitrato Deshidrogenasa/genética , Clasificación del Tumor , ARN Mensajero/metabolismo , Estudios Retrospectivos
10.
J Neurooncol ; 140(2): 341-349, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30132164

RESUMEN

PURPOSE/OBJECTIVE(S): To compare the performance of five prognostic models [RTOG recursive partitioning analysis (RPA), Score Index for Radiosurgery in Brain Metastases (SIR), Barnholtz-Sloan-Kattan nomogram (BSKN), diagnosis-specific Graded Prognostic Assessment (dsGPA), and Graded Prognostic Assessment for Lung Cancer Using Molecular Markers (Lung-molGPA)] against actual survival in patients with brain metastases treated with SRS +/- WBRT. MATERIALS/METHODS: 100 consecutive patients treated with SRS +/- WBRT between January 2006 and July 2012 were retrospectively analyzed. Patients were binned according to 33 percentiles of the predicted survival distribution for the BSKN and dsGPA models to compare with LungmolGPA, RPA and SIR. Pearson's correlation coefficients between predicted and observed survival were estimated to quantify the proportion of variance in observed survival. RESULTS: Median survival for the entire cohort was 13.5 months, with predicted vs actual MS by BSKN, SIR, dsGPA, RPA, adenocarcinoma Lung-molGPA, and nonadenocarcinoma Lung-molGPA was 3.8 vs 15.6 months, 7 vs 13.5 months, 9.4 vs 13.5 months, 10.3 vs 13.5 months, 13.7 vs 13.7 months, and 9.8 vs 9.7 months, respectively. The BSKN model and adenocarcinoma LungmolGPA created three groups with a statistically significantly different MS (p = 0.002 and p = 0.01, respectively). CONCLUSION: All models under-predicted MS and only the BSKN and Lung-molGPA model stratified patients into three risk groups with statistically significant actual MS. The prognostic groupings of the adenocarcinoma Lung-molGPA group was the best predictor of MS, and showed that we are making improvements in our prognostic ability by utilizing molecular information that is much more widely available in the current treatment era.


Asunto(s)
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Irradiación Craneana , Radiocirugia , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/secundario , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Pronóstico , Estudios Retrospectivos , Análisis de Supervivencia
11.
Biomedicines ; 12(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38927437

RESUMEN

Infiltrating gliomas are challenging to treat, as the blood-brain barrier significantly impedes the success of therapeutic interventions. While some clinical trials for high-grade gliomas have shown promise, patient outcomes remain poor. Microbubble-enhanced focused ultrasound (MB-FUS) is a rapidly evolving technology with demonstrated safety and efficacy in opening the blood-brain barrier across various disease models, including infiltrating gliomas. Initially recognized for its role in augmenting drug delivery, the potential of MB-FUS to augment liquid biopsy and immunotherapy is gaining research momentum. In this review, we will highlight recent advancements in preclinical and clinical studies that utilize focused ultrasound to treat gliomas and discuss the potential future uses of image-guided precision therapy using focused ultrasound.

12.
Nano Today ; 562024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38854931

RESUMEN

Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.

13.
Radiat Oncol ; 19(1): 36, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481255

RESUMEN

PURPOSE/OBJECTIVE(S): Treatment related lymphopenia is a known toxicity for glioblastoma (GBM) patients and several single-institution studies have linked lymphopenia with poor survival outcomes. We performed a systematic review and pooled analysis to evaluate the association between lymphopenia and overall survival (OS) for GBM patients undergoing chemotherapy and radiation therapy (RT). MATERIALS/METHODS: Following PRISMA guidelines, a systematic literature review of the MEDLINE database and abstracts from ASTRO, ASCO, and SNO annual meetings was conducted. A pooled analysis was performed using inverse variance-weighted random effects to generate a pooled estimate of the hazard ratio of association between lymphopenia and OS. RESULTS: Ten of 104 identified studies met inclusion criteria, representing 1,718 patients. The lymphopenia cutoff value varied (400-1100 cells/uL) and as well as the timing of its onset. Studies were grouped as time-point (i.e., lymphopenia at approximately 2-months post-RT) or time-range (any lymphopenia occurrence from treatment-start to approximately 2-months post-RT. The mean overall pooled incidence of lymphopenia for all studies was 31.8%, and 11.8% vs. 39.9% for time-point vs. time-range studies, respectively. Lymphopenia was associated with increased risk of death, with a pooled HR of 1.78 (95% CI 1.46-2.17, P < 0.00001) for the time-point studies, and a pooled HR of 1.38 (95% CI 1.24-1.55, P < 0.00001) for the time-point studies. There was no significant heterogeneity between studies. CONCLUSION: These results strengthen observations from previous individual single-institution studies and better defines the magnitude of the association between lymphopenia with OS in GBM patients, highlighting lymphopenia as a poor prognostic factor.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Linfopenia , Humanos , Temozolomida/uso terapéutico , Neoplasias Encefálicas/radioterapia , Linfopenia/etiología
14.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
15.
Int J Radiat Oncol Biol Phys ; 118(3): 650-661, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717787

RESUMEN

PURPOSE: Preoperative stereotactic radiosurgery (SRS) is a feasible alternative to postoperative SRS for resected brain metastases (BM). Most reported studies of preoperative SRS used single-fraction SRS (SF-SRS). The goal of this study was to compare outcomes and toxicity of preoperative SF-SRS with multifraction (3-5 fractions) SRS (MF-SRS) in a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). METHODS AND MATERIALS: Patients with BM from solid cancers, of which at least 1 lesion was treated with preoperative SRS followed by planned resection, were included from 8 institutions. SRS to synchronous intact BM was allowed. Exclusion criteria included prior or planned whole brain radiation therapy. Intracranial outcomes were estimated using cumulative incidence with competing risk of death. Propensity score matched (PSM) analyses were performed. RESULTS: The study cohort included 404 patients with 416 resected index lesions, of which SF-SRS and MF-SRS were used for 317 (78.5%) and 87 patients (21.5%), respectively. Median dose was 15 Gy in 1 fraction for SF-SRS and 24 Gy in 3 fractions for MF-SRS. Univariable analysis demonstrated that SF-SRS was associated with higher cavity local recurrence (LR) compared with MF-SRS (2-year: 16.3% vs 2.9%; P = .004), which was also demonstrated in multivariable analysis. PSM yielded 81 matched pairs (n = 162). PSM analysis also demonstrated significantly higher rate of cavity LR with SF-SRS (2-year: 19.8% vs 3.3%; P = .003). There was no difference in adverse radiation effect, meningeal disease, or overall survival between cohorts in either analysis. CONCLUSIONS: Preoperative MF-SRS was associated with significantly reduced risk of cavity LR in both the unmatched and PSM analyses. There was no difference in adverse radiation effect, meningeal disease, or overall survival based on fractionation. MF-SRS may be a preferred option for neoadjuvant radiation therapy of resected BMs. Additional confirmatory studies are needed. A phase 3 randomized trial of single-fraction preoperative versus postoperative SRS (NRG-BN012) is ongoing (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Traumatismos por Radiación , Radiocirugia , Humanos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Estudios de Cohortes , Fraccionamiento de la Dosis de Radiación , Traumatismos por Radiación/etiología , Radiocirugia/efectos adversos , Radiocirugia/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Ensayos Clínicos Fase III como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto
16.
J Neurooncol ; 113(3): 485-93, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23666202

RESUMEN

The addition of concomitant and adjuvant chemotherapy to radiation therapy after surgical resection has increased significantly the survival of patients with glioblastoma (GB). In conjunction, there has been an increasing fraction of patients who present with new enlarged areas of contrast enhancement and edema on post-treatment imaging that improve without further treatment. It remains to be established how this phenomenon, commonly termed pseudoprogression, can be distinguished from true tumor recurrence defined as the histological presence of active high-grade tumor, as well as its prognostic significance. Data for over 500 patients undergoing surgery for recurrent GB were reviewed. Pathological specimens were categorized as those that contained active high-grade glioma in any amount, and those that did not. Patient survival was compared between these two groups, and independent associations were assessed using Cox proportionate hazards regression analysis. 59 patients met the study criteria including complete pathological and follow-up data. Mean age was 53 ± 11 years. Median survival from suspected recurrence and initial diagnosis were 8 [5-14] and 20 [12-30] months. Seventeen patients (29 %) had no evidence of active high-grade tumor and 42 (71 %) had at least focal active high-grade glioma. Pathologic pseudoprogression at re-operation (p = 0.03) and gross total resection (p = 0.01) were independently associated with survival. The histopathological features defined here and used to assess the tumor at reoperation were independently associated with survival. These findings may be important in designing treatment strategies and clinical trial endpoints for patients with GB.


Asunto(s)
Neoplasias Encefálicas/mortalidad , Glioblastoma/mortalidad , Recurrencia Local de Neoplasia/mortalidad , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/cirugía , Femenino , Estudios de Seguimiento , Glioblastoma/patología , Glioblastoma/cirugía , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/cirugía , Pronóstico , Reoperación , Estudios Retrospectivos , Tasa de Supervivencia
17.
Neurosurgery ; 92(2): 241-250, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36637263

RESUMEN

BACKGROUND: Augmented reality (AR) technology is a new and promising option to advance and expand neurosurgical training because of recent advances in computer vision technology, improved AR software and hardware, and growing acceptance of this technology in clinical practice. OBJECTIVE: To analyze the current status of AR use cases with the goal of envisioning future uses of AR in neurosurgical education. METHODS: Articles applying to AR technology use in neurosurgical education were identified using PubMed, Google Scholar, and Web of Science databases following the Preferred Reporting Items of Systematic Reviews and Meta-Analyses guidelines. Articles were included for review based on applicable content related to neurosurgical or neuroanatomy training. Assessment of literature quality was completed using standardized MERSQI scoring. RESULTS: The systematic search identified 2648 unique articles. Of these, 12 studies met inclusion criteria after extensive review. The average MERSQI score was 10.2 (SD: 1.7). The most common AR platform identified in this study was the Microsoft Hololens. The primary goals of the studies were to improve technical skills and approaches to surgical planning or improve understanding of neuroanatomy. CONCLUSION: Augmented reality has emerged as a promising training tool in neurosurgery. This is demonstrated in the wide range of cases in technical training and anatomic education. It remains unclear how AR-based training compares directly with traditional training methods; however, AR shows great promise in the ability to further enhance and innovate neurosurgical education and training.


Asunto(s)
Realidad Aumentada , Neurocirugia , Humanos , Neurocirugia/educación , Procedimientos Neuroquirúrgicos/educación , Procedimientos Neuroquirúrgicos/métodos , Programas Informáticos , Revisiones Sistemáticas como Asunto
18.
Neurosurgery ; 93(6): 1346-1352, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37530524

RESUMEN

BACKGROUND AND OBJECTIVES: Intracranial meningiomas are a diverse group of tumors, which vary by grade, genetic composition, location, and vasculature. Expanding the understanding of the supply of skull base (SBMs) and non-skull base meningiomas (NSBMs) will serve to further inform resection strategies. We sought to delineate the vascular supply of a series of intracranial meningiomas by tumor location. METHODS: A retrospective study of intracranial meningiomas that were studied using preoperative digital subtraction angiograms before surgical resection at a tertiary referral center was performed. Patient, tumor, radiologic, and treatment data were collected, and regression models were developed. RESULTS: One hundred sixty-five patients met inclusion criteria. The mean age was 57.1 years (SD: 12.6). The mean tumor diameter was 4.9 cm (SD: 1.5). One hundred twenty-six were World Health Organization Grade I, 37 Grade II, and 2 Grade III. Arterial feeders were tabulated by Al-Mefty's anatomic designations. SBMs were more likely to derive arterial supply from the anterior circulation, whereas NSBMs were supplied by external carotid branches. NSBMs were larger (5.61 cm vs 4.45 cm, P = <.001), were more often presented with seizure (20% vs 8%, P = .03), were higher grade ( P = <.001) had more frequent peritumoral brain edema (84.6% vs 66%, P = .04), and had more bilateral feeders (47.7% vs 28%, P = .01) compared with SBMs. More arterial feeders were significantly associated with lower tumor grade ( P = .023, OR = 0.59). Higher tumor grade (Grade II/III) was associated with fewer arterial feeders ( P = .017, RR = 0.74). CONCLUSION: Meningioma location is associated with specific vascular supply patterns, grade, and patient outcomes. This information suggests that grade I tumors, especially larger tumors, are more likely to have diverse vascular supply patterns, including internal carotid branches. This study may inform preoperative embolization and surgical considerations, particularly for large skull base tumors.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Neoplasias de la Base del Cráneo , Humanos , Persona de Mediana Edad , Meningioma/diagnóstico por imagen , Meningioma/cirugía , Meningioma/patología , Neoplasias Meníngeas/diagnóstico por imagen , Neoplasias Meníngeas/cirugía , Neoplasias Meníngeas/patología , Estudios Retrospectivos , Base del Cráneo/diagnóstico por imagen , Base del Cráneo/patología , Neoplasias de la Base del Cráneo/diagnóstico por imagen , Neoplasias de la Base del Cráneo/cirugía , Neoplasias de la Base del Cráneo/patología
19.
ACS Nano ; 17(20): 19667-19684, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812740

RESUMEN

The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.


Asunto(s)
Nanopartículas , Neoplasias , Corona de Proteínas , Receptores del Factor de Necrosis Tumoral/química , Receptores del Factor de Necrosis Tumoral/metabolismo , Línea Celular Tumoral , Anticuerpos Monoclonales , Nanopartículas/química
20.
JAMA Oncol ; 9(8): 1066-1073, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37289451

RESUMEN

Importance: Preoperative stereotactic radiosurgery (SRS) has been demonstrated as a feasible alternative to postoperative SRS for resectable brain metastases (BMs) with potential benefits in adverse radiation effects (AREs) and meningeal disease (MD). However, mature large-cohort multicenter data are lacking. Objective: To evaluate preoperative SRS outcomes and prognostic factors from a large international multicenter cohort (Preoperative Radiosurgery for Brain Metastases-PROPS-BM). Design, Setting, and Participants: This multicenter cohort study included patients with BMs from solid cancers, of which at least 1 lesion received preoperative SRS and a planned resection, from 8 institutions. Radiosurgery to synchronous intact BMs was allowed. Exclusion criteria included prior or planned whole-brain radiotherapy and no cranial imaging follow-up. Patients were treated between 2005 and 2021, with most treated between 2017 and 2021. Exposures: Preoperative SRS to a median dose to 15 Gy in 1 fraction or 24 Gy in 3 fractions delivered at a median (IQR) of 2 (1-4) days before resection. Main Outcomes and Measures: The primary end points were cavity local recurrence (LR), MD, ARE, overall survival (OS), and multivariable analysis of prognostic factors associated with these outcomes. Results: The study cohort included 404 patients (214 women [53%]; median [IQR] age, 60.6 [54.0-69.6] years) with 416 resected index lesions. The 2-year cavity LR rate was 13.7%. Systemic disease status, extent of resection, SRS fractionation, type of surgery (piecemeal vs en bloc), and primary tumor type were associated with cavity LR risk. The 2-year MD rate was 5.8%, with extent of resection, primary tumor type, and posterior fossa location being associated with MD risk. The 2-year any-grade ARE rate was 7.4%, with target margin expansion greater than 1 mm and melanoma primary being associated with ARE risk. Median OS was 17.2 months (95% CI, 14.1-21.3 months), with systemic disease status, extent of resection, and primary tumor type being the strongest prognostic factors associated with OS. Conclusions and Relevance: In this cohort study, the rates of cavity LR, ARE, and MD after preoperative SRS were found to be notably low. Several tumor and treatment factors were identified that are associated with risk of cavity LR, ARE, MD, and OS after treatment with preoperative SRS. A phase 3 randomized clinical trial of preoperative vs postoperative SRS (NRG BN012) has began enrolling (NCT05438212).


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Femenino , Persona de Mediana Edad , Radiocirugia/métodos , Estudios de Cohortes , Estudios Retrospectivos , Factores de Riesgo , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA