Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(7): 3925-3931, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35324199

RESUMEN

Transportation emissions are the largest individual sector of greenhouse gas (GHG) emissions. As such, reducing transportation-related emissions is a primary element of every policy plan to reduce GHG emissions. The Berkeley Environmental Air-quality and CO2 Observation Network (BEACO2N) was designed and deployed with the goal of tracking changes in urban CO2 emissions with high spatial (∼1 km) and temporal (∼1 hr) resolutions while allowing the identification of trends in individual emission sectors. Here, we describe an approach to inferring vehicular CO2 emissions with sufficient precision to constrain annual trends. Measurements from 26 individual BEACO2N sites are combined and synthesized within the framework of a Gaussian plume model. After removing signals from biogenic emissions, we are able to report normalized annual emissions for 2018-2020. A reduction of 7.6 ± 3.5% in vehicular CO2 emissions is inferred for the San Francisco Bay Area over this 2 year period. This result overlaps with, but is slightly larger than, estimates from the 2017 version of the California Air Resources Board EMFAC emissions model, which predicts a 4.7% decrease over these 2 years. This demonstrates the feasibility of independently and rapidly verifying policy-driven reductions in GHG emissions from transportation with atmospheric observations in cities.


Asunto(s)
Contaminación del Aire , Gases de Efecto Invernadero , Contaminación del Aire/análisis , Dióxido de Carbono/análisis , Ciudades , Gases de Efecto Invernadero/análisis , Emisiones de Vehículos/análisis
2.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34870986

RESUMEN

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Nitratos/análisis
3.
Environ Sci Technol ; 52(23): 13738-13746, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30407797

RESUMEN

The concentration of nitrogen oxides (NO x) plays a central role in controlling air quality. On a global scale, the primary sink of NO x is oxidation to form HNO3. Gas-phase HNO3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO3 undergoes photolysis 10-300 times more rapidly than gas-phase HNO3. We present here constraints on the rate of particle-phase HNO3 photolysis based on observations of NO x and HNO3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO x to HNO3 ratios. Negligible to moderate enhancements of the HNO3 photolysis rate in particles, 1-30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO3 photolysis would not significantly affect the HNO3 budget but could help explain observations of HONO and NO x in highly aged air.


Asunto(s)
Óxidos de Nitrógeno , Ácido Nitroso , Aerosoles , Nitratos , Fotólisis
4.
J Phys Chem A ; 120(9): 1468-78, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26575342

RESUMEN

NOx (NOx ≡ NO + NO2) regulates O3 and HOx (HOx ≡ OH + HO2) concentrations in the upper troposphere. In the laboratory, it is difficult to measure rates and branching ratios of the chemical reactions affecting NOx at the low temperatures and pressures characteristic of the upper troposphere, making direct measurements in the atmosphere especially useful. We report quasi-Lagrangian observations of the chemical evolution of an air parcel following a lightning event that results in high NOx concentrations. These quasi-Lagrangian measurements obtained during the Deep Convective Clouds and Chemistry experiment are used to characterize the daytime rates for conversion of NOx to different peroxy nitrates, the sum of alkyl and multifunctional nitrates, and HNO3. We infer the following production rate constants [in (cm(3)/molecule)/s] at 225 K and 230 hPa: 7.2(±5.7) × 10(-12) (CH3O2NO2), 5.1(±3.1) × 10(-13) (HO2NO2), 1.3(±0.8) × 10(-11) (PAN), 7.3(±3.4) × 10(-12) (PPN), and 6.2(±2.9) × 10(-12) (HNO3). The HNO3 and HO2NO2 rates are ∼ 30-50% lower than currently recommended whereas the other rates are consistent with current recommendations to within ±30%. The analysis indicates that HNO3 production from the HO2 and NO reaction (if any) must be accompanied by a slower rate for the reaction of OH with NO2, keeping the total combined rate for the two processes at the rate reported for HNO3 production above.

5.
Environ Sci Technol ; 49(21): 12774-81, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26436410

RESUMEN

Recent observations suggest a large and unknown daytime source of nitrous acid (HONO) to the atmosphere. Multiple mechanisms have been proposed, many of which involve chemistry that reduces nitrogen dioxide (NO2) on some time scale. To examine the NO2 dependence of the daytime HONO source, we compare weekday and weekend measurements of NO2 and HONO in two U.S. cities. We find that daytime HONO does not increase proportionally to increases in same-day NO2, i.e., the local NO2 concentration at that time and several hours earlier. We discuss various published HONO formation pathways in the context of this constraint.


Asunto(s)
Atmósfera/química , Dióxido de Nitrógeno/análisis , Ácido Nitroso/análisis , California , Ciudades , Fluorescencia , Propiedades de Superficie , Factores de Tiempo
6.
Science ; 315(5813): 816-20, 2007 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-17204609

RESUMEN

We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the upper troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the eastern United States and Canada during summer. These measurements provide unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

7.
Appl Opt ; 41(33): 6950-6, 2002 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-12463239

RESUMEN

Routine observations of atmospheric NO2 at concentrations ranging from 0.1 to 100 parts per billion are needed for air quality monitoring and for the evaluation of photochemical models. We have designed, constructed, and field tested a relatively inexpensive and specific NO2 sensor using laser-induced fluorescence. The instrument combines a commercial cw external-cavity tunable diode laser (640 nm) and a continuous supersonic expansion. The total package is completely automated, has a modest size of 0.5 m3 and 118 kg, and could be manufactured at competitive price, with the current generation of instruments. The sensitivity of the instrument is 145 part per trillion by volume min(-1) (signal-to-noise ratio of 2), which is more than adequate for monitoring purposes.

8.
Environ Sci Technol ; 37(24): 5732-8, 2003 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-14717187

RESUMEN

We describe a prototype designed for in situ detection of the nitrate radical (NO3) by laser-induced fluorescence (LIF) and of N2O5 by thermal dissociation followed by LIF detection of NO3. An inexpensive 36 mW continuous wave multi-mode diode laser at 662 nm is used to excite NO3 in the B2E'(0000) <-- X2A'2(0000) band. Fluorescence is collected from 700 to 750 nm. The prototype has a sensitivity to NO3 of 76 ppt for a 60 s integration with an accuracy of 8%. Although this sensitivity is adequate for studies of N205 in many environments, it is much less sensitive (about 300 times) than expected based on a comparison of previously measured photophysical properties of NO2 and NO3. This implies much stronger nonradiative coupling of electronic states in NO3 than in NO2.


Asunto(s)
Monitoreo del Ambiente/métodos , Nitratos/análisis , Óxidos de Nitrógeno/análisis , Diseño de Equipo , Fluorescencia , Rayos Láser , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA