Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 102(2): 405-420, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35643372

RESUMEN

Autosomal Dominant Tubulointerstitial Kidney Disease (ADTKD) is caused by mutations in one of at least five genes and leads to kidney failure usually in mid adulthood. Throughout the literature, variable numbers of families have been reported, where no mutation can be found and therefore termed ADTKD-not otherwise specified. Here, we aim to clarify the genetic cause of their diseases in our ADTKD registry. Sequencing for all known ADTKD genes was performed, followed by SNaPshot minisequencing for the dupC (an additional cytosine within a stretch of seven cytosines) mutation of MUC1. A virtual panel containing 560 genes reported in the context of kidney disease (nephrome) and exome sequencing were then analyzed sequentially. Variants were validated and tested for segregation. In 29 of the 45 registry families, mutations in known ADTKD genes were found, mostly in MUC1. Sixteen families could then be termed ADTKD-not otherwise specified, of which nine showed diagnostic variants in the nephrome (four in COL4A5, two in INF2 and one each in COL4A4, PAX2, SALL1 and PKD2). In the other seven families, exome sequencing analysis yielded potential disease associated variants in novel candidate genes for ADTKD; evaluated by database analyses and genome-wide association studies. For the great majority of our ADTKD registry we were able to reach a molecular genetic diagnosis. However, a small number of families are indeed affected by diseases classically described as a glomerular entity. Thus, incomplete clinical phenotyping and atypical clinical presentation may have led to the classification of ADTKD. The identified novel candidate genes by exome sequencing will require further functional validation.


Asunto(s)
Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Adulto , Pruebas Genéticas , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Enfermedades Renales Poliquísticas/genética , Riñón Poliquístico Autosómico Dominante/genética
2.
Hypertension ; 81(9): 1857-1868, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39005223

RESUMEN

BACKGROUND: Autosomal recessive renal tubular dysgenesis is a rare, usually fatal inherited disorder of the renin-angiotensis system (RAS). Herein, we report an adolescent individual experiencing an unknown chronic kidney disease and aim to provide novel insights into disease mechanisms. METHODS: Exome sequencing for a gene panel associated with renal disease was performed. The RAS was assessed by comprehensive biochemical analysis in blood. Renin expression was determined in primary tubular cells by quantitative polymerase chain reaction and in situ hybridization on kidney biopsy samples. Allele frequencies of heterozygous and biallelic deleterious variants were determined by analysis of the Genomics England 100,000 Genomes Project. RESULTS: The patient was delivered prematurely after oligohydramnios was detected during pregnancy. Postnatally, he recovered from third-degree acute kidney injury but developed chronic kidney disease stage G3b over time. Exome sequencing revealed a previously reported pathogenic homozygous missense variant, p.(Arg375Gln), in the AGT (angiotensinogen) gene. Blood AGT concentrations were low, but plasma renin concentration and gene expression in kidney biopsy, vascular, and tubular cells revealed strong upregulation of renin. Angiotensin II and aldosterone in blood were not abnormally elevated. CONCLUSIONS: Renal tubular dysgenesis may present as chronic kidney disease with a variable phenotype, necessitating broad genetic analysis for diagnosis. Functional analysis of the RAS in a patient with AGT mutation revealed novel insights regarding compensatory upregulation of renin in vascular and tubular cells of the kidney and in plasma in response to depletion of AGT substrate as a source of Ang II (similarly observed with hepatic AGT silencing for the treatment of hypertension).


Asunto(s)
Angiotensinógeno , Humanos , Angiotensinógeno/genética , Masculino , Adolescente , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiología , Progresión de la Enfermedad , Renina/genética , Renina/sangre , Renina/metabolismo , Mutación Missense/genética , Secuenciación del Exoma/métodos , Femenino , Túbulos Renales Proximales/anomalías , Anomalías Urogenitales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA