Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Acta Neuropsychiatr ; : 1-13, 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39370934

RESUMEN

The dorsal midbrain comprises dorsal columns of the periaqueductal grey matter and corpora quadrigemina. These structures are rich in beta-endorphinergic and leu-enkephalinergic neurons and receive GABAergic inputs from substantia nigra pars reticulata. Although the inferior colliculus (IC) is mainly involved in the acoustic pathways, the electrical and chemical stimulation of central and pericentral nuclei of the IC elicits a vigorous defensive behaviour. The defensive immobility and escape elicited by IC activation is commonly related to panic-like emotional states. To investigate the role of κ-opioid receptor of the IC in the antiaversive effects of endogenous opioid receptor blockade in a dangerous situation, male Wistar rats were pretreated in the IC with the κ-opioid receptor-selective antagonist nor-binaltorphimine at different concentrations and submitted to the non-enriched polygonal arena for a snake panic test in the presence of a rattlesnake and, after 24 h, prey were resubmitted to the experimental context. The snakes elicited in prey a set of antipredatory behaviours, such as the anxiety-like responses of defensive attention and risk assessment, and the panic-like reactions of defensive immobility and either escape or active avoidance during the elaboration of unconditioned and conditioned fear-related responses. Pretreatment of the IC with microinjections of nor-binaltorphimine at higher concentrations significantly decreased the frequency and duration of both anxiety- and panic-attack-like behaviours. These findings suggest that κ-opioid receptor blockade in the IC causes anxiolytic- and panicolytic-like responses in threatening conditions, and that kappa-opioid receptor-selective antagonists can be a putative coadjutant treatment for panic syndrome treatment.

2.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36835313

RESUMEN

Adolescent exposure to cannabinoids as a postnatal environmental insult may increase the risk of psychosis in subjects exposed to perinatal insult, as suggested by the two-hit hypothesis of schizophrenia. Here, we hypothesized that peripubertal Δ9-tetrahydrocannabinol (aTHC) may affect the impact of prenatal methylazoxymethanol acetate (MAM) or perinatal THC (pTHC) exposure in adult rats. We found that MAM and pTHC-exposed rats, when compared to the control group (CNT), were characterized by adult phenotype relevant to schizophrenia, including social withdrawal and cognitive impairment, as revealed by social interaction test and novel object recognition test, respectively. At the molecular level, we observed an increase in cannabinoid CB1 receptor (Cnr1) and/or dopamine D2/D3 receptor (Drd2, Drd3) gene expression in the prefrontal cortex of adult MAM or pTHC-exposed rats, which we attributed to changes in DNA methylation at key regulatory gene regions. Interestingly, aTHC treatment significantly impaired social behavior, but not cognitive performance in CNT groups. In pTHC rats, aTHC did not exacerbate the altered phenotype nor dopaminergic signaling, while it reversed cognitive deficit in MAM rats by modulating Drd2 and Drd3 gene expression. In conclusion, our results suggest that the effects of peripubertal THC exposure may depend on individual differences related to dopaminergic neurotransmission.


Asunto(s)
Dronabinol , Efectos Tardíos de la Exposición Prenatal , Esquizofrenia , Animales , Femenino , Humanos , Embarazo , Ratas , Modelos Animales de Enfermedad , Dopamina/metabolismo , Dronabinol/toxicidad , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Receptores de Dopamina D3/metabolismo , Esquizofrenia/inducido químicamente
3.
Pharmacol Res ; 174: 105938, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34655773

RESUMEN

The recent shift in socio-political debates and growing liberalization of Cannabis use across the globe has raised concern regarding its impact on vulnerable populations such as adolescents. Concurrent with declining perception of Cannabis harms, more adolescents are using it daily in several countries and consuming marijuana strains with high content of psychotropic delta (9)-tetrahydrocannabinol (THC). These dual, related trends seem to facilitate the development of compromised social and cognitive performance at adulthood, which are described in preclinical and human studies. Cannabis exerts its effects via altering signalling within the endocannabinoid system (ECS), which modulates the stress circuitry during the neurodevelopment. In this context early interventions appear to circumvent the emergence of adult neurodevelopmental deficits. Accordingly, Cannabis sativa second-most abundant compound, cannabidiol (CBD), emerges as a potential therapeutic agent to treat neuropsychiatric disorders. We first focus on human and preclinical studies on the long-term effects induced by adolescent THC exposure as a "critical window" of enhanced neurophysiological vulnerability, which could be involved in the pathophysiology of schizophrenia and related primary psychotic disorders. Then, we focus on adolescence as a "window of opportunity" for early pharmacological treatment, as novel risk reduction strategy for neurodevelopmental disorders. Thus, we review current preclinical and clinical evidence regarding the efficacy of CBD in terms of positive, negative and cognitive symptoms treatment, safety profile, and molecular targets.


Asunto(s)
Cannabinoides , Fitoquímicos , Psicosis Inducidas por Sustancias , Esquizofrenia , Adolescente , Animales , Cannabinoides/efectos adversos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Humanos , Fitoquímicos/efectos adversos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Psicosis Inducidas por Sustancias/tratamiento farmacológico , Psicosis Inducidas por Sustancias/metabolismo , Esquizofrenia/inducido químicamente , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Esquizofrenia/prevención & control
4.
Pharmacol Res ; 164: 105357, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33285233

RESUMEN

Perinatal exposure to Δ9-tetrahydrocannabinol (THC) affects brain development and might increase the incidence of psychopathology later in life, which seems to be related to a dysregulation of endocannabinoid and/or dopaminergic systems. We here evaluated the transcriptional regulation of the genes encoding for the cannabinoid CB1 receptor (Cnr1) and the dopamine D2 receptor (Drd2) in perinatal THC-(pTHC) exposed male rats, focusing on the role of DNA methylation analyzed by pyrosequencing. Simultaneously, the molecular and behavioral abnormalities at two different time points (i.e., neonatal age and adulthood) and the potential preventive effect of peripubertal treatment with cannabidiol, a non-euphoric component of Cannabis, were assessed. The DRD2 methylation was also evaluated in a cohort of subjects with schizophrenia. We observed an increase in both Cnr1 and Drd2 mRNA levels selectively in the prefrontal cortex of adult pTHC-exposed rats with a consistent reduction in DNA methylation at the Drd2 regulatory region, paralleled by social withdrawal and cognitive impairment which were reversed by cannabidiol treatment. These adult abnormalities were preceded at neonatal age by delayed appearance of neonatal reflexes, higher Drd2 mRNA and lower 2-arachidonoylglycerol (2-AG) brain levels, which persisted till adulthood. Alterations of the epigenetic mark for DRD2 were also found in subjects with schizophrenia. Overall, reported data add further evidence to the dopamine-cannabinoid interaction in terms of DRD2 and CNR1 dysregulation which could be implicated in the pathogenesis of schizophrenia spectrum disorders, suggesting that cannabidiol treatment may normalize pTHC-induced psychopathology by modulating the altered dopaminergic activity.


Asunto(s)
Dronabinol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Corteza Prefrontal/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Receptor Cannabinoide CB1/genética , Receptores de Dopamina D2/genética , Esquizofrenia/genética , Animales , Conducta Animal/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Femenino , Humanos , Masculino , Intercambio Materno-Fetal , Corteza Prefrontal/metabolismo , Embarazo , ARN Mensajero/metabolismo , Ratas Sprague-Dawley
5.
Learn Mem ; 25(9): 446-454, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30115766

RESUMEN

The prerequisites for responsible cannabis use are at the heart of current inquiries into cannabis decriminalization by policy makers as well as academic and nonacademic stakeholders at a global scale. Δ9-tetrahydrocannabinol (Δ9-THC), the prime psychoactive compound of the cannabis sativa, as well as cannabimimetics that resemble the pharmacological properties and psychological effects of Δ9-THC, lend themselves handsomely to the preclinical scrutiny of reward-related behavior because they carry marked translational value. Although a functional dichotomy of the psychological effects of Δ9-THC (rewarding versus aversive) has been abundantly reported in place conditioning (PC) paradigms, and might be best attributed to a dose-dependence of Δ9-THC, most PC studies with Δ9-THC feature no significant effects at all. Therefore, after decades of rigorous research, it still remains undetermined whether Δ9-THC generally exerts rewarding or aversive effects in rodents. Here, we set out to extrapolate the commonly alleged dose-dependence of the rewarding and aversive effects of Δ9-THC from the existing literature, at the behavioral pharmacological level of analysis. Specifically, our meta-analysis investigated: (i) the alleged bidirectional effects and dose-dependence of Δ9-THC in the PC test; (ii) methodological inconsistencies between PC studies; and (iii) other pharmacological studies on cannabinoids (i.e., dopamine release, anxiety, stress, conditioned taste aversion, catalepsy) to substantiate the validity of PC findings. Our findings suggest that: (i) Δ9-THC dose-dependently generates rewarding (1 mg/kg) and aversive (5 mg/kg) effects in PC; (ii) an inconsistent use of priming injections hampers a clear establishment of the rewarding effects of Δ9-THC in PC tests and might explain the seemingly contradictory plethora of nonsignificant THC studies in the PC test; and (iii) other pharmacological studies on Δ9-THC substantiate the dose-dependent biphasic effects of Δ9-THC in PC. A standardized experimental design would advance evidence-based practice in future PC studies with Δ9-THC and facilitate the pointed establishment of rewarding and aversive effects of the substance.


Asunto(s)
Conducta Animal/efectos de los fármacos , Agonistas de Receptores de Cannabinoides/farmacología , Condicionamiento Clásico/efectos de los fármacos , Dronabinol/farmacología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Neuroimage ; 169: 374-382, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277401

RESUMEN

Manganese-enhanced magnetic resonance imaging (MEMRI) exploits the biophysical similarity of Ca2+ and Mn2+ to map the brain's activity in vivo. However, to what extent different Ca2+ channels contribute to the enhanced signal that MEMRI provides and how Mn2+ dynamics influence Mn2+ brain accumulation after systemic administration of MnCl2 are not yet fully understood. Here, we demonstrate that mice lacking the L-type Ca2+ channel 1.2 (Cav1.2) in the CNS show approximately 50% less increase in MEMRI contrast after repeated systemic MnCl2 injections, as compared to control mice. In contrast, genetic deletion of L-type Ca2+ channel 1.3 (Cav1.3) did not reduce signal. Brain structure- or cell type-specific deletion of Cav1.2 in combination with voxel-wise MEMRI analysis revealed a preferential accumulation of Mn2+ in projection terminals, which was confirmed by local MnCl2 administration to defined brain areas. Taken together, we provide unequivocal evidence that Cav1.2 represents an important channel for neuronal Mn2+ influx after systemic injections. We also show that after neuronal uptake, Mn2+ preferentially accumulates in projection terminals.


Asunto(s)
Encéfalo , Canales de Calcio Tipo L/metabolismo , Cloruros/administración & dosificación , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/administración & dosificación , Manganeso/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/metabolismo
7.
J Neurosci ; 35(9): 3879-92, 2015 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-25740517

RESUMEN

Corticotropin-releasing hormone (CRH) is a central integrator in the brain of endocrine and behavioral stress responses, whereas activation of the endocannabinoid CB1 receptor suppresses these responses. Although these systems regulate overlapping functions, few studies have investigated whether these systems interact. Here we demonstrate a novel mechanism of CRH-induced anxiety that relies on modulation of endocannabinoids. Specifically, we found that CRH, through activation of the CRH receptor type 1 (CRHR1), evokes a rapid induction of the enzyme fatty acid amide hydrolase (FAAH), which causes a reduction in the endocannabinoid anandamide (AEA), within the amygdala. Similarly, the ability of acute stress to modulate amygdala FAAH and AEA in both rats and mice is also mediated through CRHR1 activation. This interaction occurs specifically in amygdala pyramidal neurons and represents a novel mechanism of endocannabinoid-CRH interactions in regulating amygdala output. Functionally, we found that CRH signaling in the amygdala promotes an anxious phenotype that is prevented by FAAH inhibition. Together, this work suggests that rapid reductions in amygdala AEA signaling following stress may prime the amygdala and facilitate the generation of downstream stress-linked behaviors. Given that endocannabinoid signaling is thought to exert "tonic" regulation on stress and anxiety responses, these data suggest that CRH signaling coordinates a disruption of tonic AEA activity to promote a state of anxiety, which in turn may represent an endogenous mechanism by which stress enhances anxiety. These data suggest that FAAH inhibitors may represent a novel class of anxiolytics that specifically target stress-induced anxiety.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ácidos Araquidónicos/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Endocannabinoides/metabolismo , Alcamidas Poliinsaturadas/metabolismo , Hormona Adrenocorticotrópica/metabolismo , Amidohidrolasas/metabolismo , Animales , Hidrólisis , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/fisiología , Estrés Psicológico/metabolismo , Estrés Psicológico/psicología
8.
Proc Natl Acad Sci U S A ; 109(51): 21134-9, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23150578

RESUMEN

Allosteric modulation of G-protein-coupled receptors represents a key goal of current pharmacology. In particular, endogenous allosteric modulators might represent important targets of interventions aimed at maximizing therapeutic efficacy and reducing side effects of drugs. Here we show that the anti-inflammatory lipid lipoxin A(4) is an endogenous allosteric enhancer of the CB(1) cannabinoid receptor. Lipoxin A(4) was detected in brain tissues, did not compete for the orthosteric binding site of the CB(1) receptor (vs. (3)H-SR141716A), and did not alter endocannabinoid metabolism (as opposed to URB597 and MAFP), but it enhanced affinity of anandamide at the CB1 receptor, thereby potentiating the effects of this endocannabinoid both in vitro and in vivo. In addition, lipoxin A(4) displayed a CB(1) receptor-dependent protective effect against ß-amyloid (1-40)-induced spatial memory impairment in mice. The discovery of lipoxins as a class of endogenous allosteric modulators of CB(1) receptors may foster the therapeutic exploitation of the endocannabinoid system, in particular for the treatment of neurodegenerative disorders.


Asunto(s)
Antiinflamatorios/metabolismo , Lipoxinas/metabolismo , Receptor Cannabinoide CB1/metabolismo , Sitio Alostérico , Proteínas Amiloidogénicas/metabolismo , Animales , Encéfalo/metabolismo , Endocannabinoides/metabolismo , Inflamación , Cinética , Memoria , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Fármacos Neuroprotectores/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Conducta Espacial
9.
Learn Mem ; 21(4): 232-52, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24643725

RESUMEN

Memories relating to a painful, negative event are adaptive and can be stored for a lifetime to support preemptive avoidance, escape, or attack behavior. However, under unfavorable circumstances such memories can become overwhelmingly powerful. They may trigger excessively negative psychological states and uncontrollable avoidance of locations, objects, or social interactions. It is therefore obvious that any process to counteract such effects will be of value. In this context, we stress from a basic-research perspective that painful, negative events are "Janus-faced" in the sense that there are actually two aspects about them that are worth remembering: What made them happen and what made them cease. We review published findings from fruit flies, rats, and man showing that both aspects, respectively related to the onset and the offset of the negative event, induce distinct and oppositely valenced memories: Stimuli experienced before an electric shock acquire negative valence as they signal upcoming punishment, whereas stimuli experienced after an electric shock acquire positive valence because of their association with the relieving cessation of pain. We discuss how memories for such punishment- and relief-learning are organized, how this organization fits into the threat-imminence model of defensive behavior, and what perspectives these considerations offer for applied psychology in the context of trauma, panic, and nonsuicidal self-injury.


Asunto(s)
Encéfalo/fisiología , Aprendizaje/fisiología , Memoria/fisiología , Dolor/fisiopatología , Dolor/psicología , Animales , Drosophila , Humanos , Modelos Neurológicos , Ratas
10.
Circulation ; 128(24): 2585-94, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24218458

RESUMEN

BACKGROUND: Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. METHODS AND RESULTS: Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. CONCLUSIONS: We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.


Asunto(s)
Modelos Animales de Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/deficiencia , Canales de Potasio/deficiencia , Síndrome del Seno Enfermo/fisiopatología , Animales , Gasto Cardíaco/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Canales de Potasio/genética , Canales de Potasio/metabolismo , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiopatología
11.
Eur J Neurosci ; 40(1): 2293-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24698342

RESUMEN

Abnormalities in social behavior are found in almost all psychiatric disorders, such as anxiety, depression, autism, and schizophrenia. Thus, comprehension of the neurobiological basis of social interaction is important for a better understanding of numerous pathologies and improved treatments. Several findings have suggested that an alteration of cannabinoid receptor type 1 (CB1) receptor function could be involved in the pathophysiology of such disorders. However, the role of CB1 receptors is still unclear, and their localisation on different neuronal subpopulations may produce distinct outcomes. To dissect the role of CB1 receptors in different neuronal populations, we used male knockout mice and their respective control littermates [total deletion (CB1(-/-) ); specific deletion on cortical glutamatergic neurons (Glu-CB1(-/-) ) or on GABAergic interneurons (GABA-CB1(-/-) ), and wild-type (WT) mice treated with the CB1 antagonist/inverse agonist SR141716A (3 mg/kg). Mice were required to perform different social tasks - direct social interaction and social investigation. Direct interaction of two male mice was not modified in any group; however, when they were paired with females, Glu-CB1(-/-) mice showed reduced interaction. Also, exploration of the male stimulus subject in the three-chamber social investigation test was almost unaffected. The situation was completely different when a female was used as the stimulus subject. In this case, Glu-CB1(-/-) mice showed reduced interest in the social stimulus, mimicking the phenotype of CB1(-/-) or WT mice treated with SR141716A. GABA-CB1(-/-) mice showed the opposite phenotype, by spending more time investigating the social stimulus. In conclusion, we provide evidence that CB1 receptors specifically modulate the social investigation of female mice in a neuronal subtype-specific manner.


Asunto(s)
Conducta Animal/fisiología , Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Receptor Cannabinoide CB1/metabolismo , Conducta Social , Animales , Antagonistas de Receptores de Cannabinoides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/fisiología , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Masculino , Ratones Noqueados , Neuronas/efectos de los fármacos , Pruebas Neuropsicológicas , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/antagonistas & inhibidores , Receptor Cannabinoide CB1/genética , Rimonabant , Caracteres Sexuales
12.
Neuropharmacology ; 254: 109970, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685343

RESUMEN

Pharmacological approaches to induce N-methyl-d-aspartate receptor (NMDAR) hypofunction have been intensively used to understand the aetiology and pathophysiology of schizophrenia. Yet, the precise cellular and molecular mechanisms that relate to brain network dysfunction remain largely unknown. Here, we used a set of complementary approaches to assess the functional network abnormalities present in male mice that underwent a 7-day subchronic phencyclidine (PCP 10 mg/kg, subcutaneously, once daily) treatment. Our data revealed that pharmacological intervention with PCP affected cognitive performance and auditory evoked gamma oscillations in the prefrontal cortex (PFC) mimicking endophenotypes of some schizophrenia patients. We further assessed PFC cellular function and identified altered neuronal intrinsic membrane properties, reduced parvalbumin (PV) immunostaining and diminished inhibition onto L5 PFC pyramidal cells. A decrease in the strength of optogenetically-evoked glutamatergic current at the ventral hippocampus to PFC synapse was also demonstrated, along with a weaker shunt of excitatory transmission by local PFC interneurons. On a macrocircuit level, functional ultrasound measurements indicated compromised functional connectivity within several brain regions particularly involving PFC and frontostriatal circuits. Herein, we reproduced a panel of schizophrenia endophenotypes induced by subchronic PCP application in mice. We further recapitulated electrophysiological signatures associated with schizophrenia and provided an anatomical reference to critical elements in the brain circuitry. Together, our findings contribute to a better understanding of the physiological underpinnings of deficits induced by subchronic NMDAR antagonist regimes and provide a test system for characterization of pharmacological compounds.


Asunto(s)
Modelos Animales de Enfermedad , Fenciclidina , Corteza Prefrontal , Receptores de N-Metil-D-Aspartato , Animales , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Masculino , Fenciclidina/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones , Esquizofrenia/inducido químicamente , Esquizofrenia/fisiopatología , Esquizofrenia/metabolismo , Ratones Endogámicos C57BL , Parvalbúminas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/fisiología , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Ritmo Gamma/efectos de los fármacos , Ritmo Gamma/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología
13.
Artículo en Inglés | MEDLINE | ID: mdl-39387863

RESUMEN

RATIONALE: Despite the existing anatomical and physiological evidence pointing to the involvement of orexinergic projections from the lateral hypothalamus (LH) in regulating fear-related responses, little is known regarding the contribution of the orexin system in the prelimbic cortex (PL) on contextual fear. OBJECTIVES: We investigated the role of orexin-A (OrxA) and orexin type 1 receptors (Orx1R) in the PL during the expression of contextual conditioned fear in mice. METHODS: Neural tract tracing of the LH-PL pathway and Orx1R immunoreactivity in the PL of C57BL/6 male mice were performed. In a pharmacological approach, the animals were treated with either the Orx1R selective antagonist SB 334,867 (3, 30, and 300 nM/0.1 µL) or OrxA (28, 70, and 140 pmol/0.1 µL) in the PL before the test session of contextual fear conditioning. RESULTS: Neural tract tracing deposits in the LH showed some perikarya, mainly axons and terminal buttons in the PL, suggesting LH-PL reciprocate pathways. Furthermore, we showed a profuse network comprised of Orx1R-labeled thin varicose fibers widely distributed in the same field of LH-PL pathways projection. The selective blockade of Orx1R with SB 334,867 at 30 and 300 nM in the PL caused a decrease in freezing response, whereas the treatment with OrxA at 140 pmol promoted an increase in freezing response. CONCLUSION: In summary, these data confirmed an anatomical link between LH and PL, established the presence of Orx1R in the PL, and a modulatory role of the orexin system in such structure, possibly mainly via Orx1R, during contextual fear conditioning.

14.
Sci Signal ; 17(834): eadj6603, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687825

RESUMEN

The localization, number, and function of postsynaptic AMPA-type glutamate receptors (AMPARs) are crucial for synaptic plasticity, a cellular correlate for learning and memory. The Hippo pathway member WWC1 is an important component of AMPAR-containing protein complexes. However, the availability of WWC1 is constrained by its interaction with the Hippo pathway kinases LATS1 and LATS2 (LATS1/2). Here, we explored the biochemical regulation of this interaction and found that it is pharmacologically targetable in vivo. In primary hippocampal neurons, phosphorylation of LATS1/2 by the upstream kinases MST1 and MST2 (MST1/2) enhanced the interaction between WWC1 and LATS1/2, which sequestered WWC1. Pharmacologically inhibiting MST1/2 in male mice and in human brain-derived organoids promoted the dissociation of WWC1 from LATS1/2, leading to an increase in WWC1 in AMPAR-containing complexes. MST1/2 inhibition enhanced synaptic transmission in mouse hippocampal brain slices and improved cognition in healthy male mice and in male mouse models of Alzheimer's disease and aging. Thus, compounds that disrupt the interaction between WWC1 and LATS1/2 might be explored for development as cognitive enhancers.


Asunto(s)
Hipocampo , Péptidos y Proteínas de Señalización Intracelular , Plasticidad Neuronal , Fosfoproteínas , Proteínas Serina-Treonina Quinasas , Receptores AMPA , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Masculino , Humanos , Receptores AMPA/metabolismo , Receptores AMPA/genética , Ratones , Plasticidad Neuronal/fisiología , Hipocampo/metabolismo , Vía de Señalización Hippo , Serina-Treonina Quinasa 3 , Transducción de Señal , Memoria/fisiología , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Factor de Crecimiento de Hepatocito/metabolismo , Ratones Endogámicos C57BL , Enfermedad de Alzheimer/metabolismo , Fosforilación , Neuronas/metabolismo
15.
Cell Tissue Res ; 354(1): 27-39, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24022232

RESUMEN

Abstract Microdialysis is one of the most powerful neurochemistry techniques, which allows the monitoring of changes in the extracellular content of endogenous and exogenous substances in the brain of living animals. The strength as well as wide applicability of this experimental approach are based on the bulk theory of brain neurotransmission. This methodological review introduces basic principles of chemical neurotransmission and emphasizes the difference in neurotransmission types.Clear understanding of their significance and degree of engagement in regulation of physiological processes is an ultimate prerequisite not only for choosing an appropriate method of monitoring for interneuronal communication via chemical messengers but also for accurate data interpretation. The focus on the processes of synthesis/metabolism, receptor interaction/neuronal signaling or the behavioral relevance of neurochemical events sculpts the experiment design. Brain microdialysis is an important method for examining changes in the content of any substances, irrespective of their origin, in living animals. This article compares contemporary approaches and techniques that are used for monitoring neurotransmission (including in vivo brain microdialysis, voltammetric methods, etc). We highlight practical aspects of microdialysis experiments in particular to those researchers who are seeking to increase the repertoire of their experimental techniques with brain microdialysis.


Asunto(s)
Química Encefálica , Encéfalo/fisiología , Microdiálisis/métodos , Neuroquímica/métodos , Animales , Encéfalo/metabolismo , Humanos
16.
Neuropharmacology ; 224: 109314, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36336070

RESUMEN

The transient receptor potential vanilloid type-1 (TRPV1) channels have been implicated in the modulation of aversive responses. The endocannabinoid anandamide acts as an endogenous TRPV1 agonist, exerting opposite functions at TRPV1 and type-1 cannabinoid receptors (CB1R). Here we tested the hypothesis that hippocampal TRPV1 modulates contextual fear memory retrieval and investigated the influence of the aversive stimulus intensity as well as the role of endocannabinoid signaling. Male C57BL/6J mice were tested for contextual fear memory after low-, moderate-, or high-intensity shock protocols. The selective TRPV1 blockers SB366791 (1-10 nmol) and 6-I-NC (2 nmol) were infused via intra-dorsal hippocampus before the retrieval test session. The local levels of endocannabinoids and Arc and Zif268 mRNAs, involved in synaptic plasticity and memory, were quantified. First, both TRPV1 blockers reduced memory retrieval in animals exposed to moderate or high (but not low) intensity training protocols. In the second series of results, the magnitude of the freezing responses positively correlated with the hippocampal anandamide levels; TRPV1 and CB1R were found co-localized in this brain region; and the CB1R antagonist, AM251, prevented the effects of SB366791. Thus, endocannabinoid signaling possibly mediates the effects of TRPV1 blockers. Finally, inhibition of memory retrieval by TRPV1 blockers increased Arc and Zif268 mRNAs and impaired fear memory reinstatement. In conclusion, the modulation of fear memories by dorsal hippocampal TRPV1 channels may depend on the aversive stimulus intensity and occur via anandamide/CB1 signaling. Moreover, TRPV1 blockers promote Arc and Zif268 transcription, with subsequent attenuation of aversive memory reinstatement.


Asunto(s)
Endocannabinoides , Miedo , Ratones , Animales , Masculino , Endocannabinoides/farmacología , Ratones Endogámicos C57BL , Hipocampo , Receptor Cannabinoide CB1 , Canales Catiónicos TRPV/metabolismo
17.
Neurobiol Learn Mem ; 98(1): 47-55, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22579951

RESUMEN

The cannabinoid receptor type 1 (CB1) is abundantly expressed in the central nervous system where it negatively controls the release of several neurotransmitters. CB1 activity plays a crucial role in learning and memory and in synaptic plasticity. In the present study, the role of CB1 was investigated in three different hippocampus-dependent memory tasks and in in vivo hippocampal synaptic plasticity in knockout (CB1-ko) and wildtype mice. There was no difference in short-term and long-term social and object recognition memory between CB1-ko and wildtype mice. In contrast, in background contextual fear conditioning CB1-ko mice showed enhanced freezing levels in the conditioning context and increased generalised contextual fear after a high-intensity conditioning foot shock of 1.5 mA, but not after 0.7 mA. In in vivo field potential recordings in the dentate gyrus, CB1-ko mice displayed a decreased paired-pulse facilitation of the populations spikes, suggesting an altered inhibitory synaptic drive onto hippocampal granule cells. Furthermore, CB1-ko mice displayed significantly higher levels of in vivo long-term potentiation (LTP) in the dentate gyrus. In conclusion, CB1 deficiency leads to enhanced contextual fear memory and altered synaptic plasticity in the hippocampus, supporting the key role of endocannabinoid signalling in learning and memory, in particular following highly aversive encounters.


Asunto(s)
Asociación , Miedo/fisiología , Hipocampo/fisiología , Memoria/fisiología , Receptor Cannabinoide CB1/genética , Animales , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Señales (Psicología) , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Neuronas/fisiología , Receptor Cannabinoide CB1/metabolismo , Reconocimiento en Psicología/fisiología
18.
Neurobiol Learn Mem ; 98(1): 56-65, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22579802

RESUMEN

Patients diagnosed for anxiety disorders often display faster acquisition and slower extinction of learned fear. To gain further insights into the mechanisms underlying these phenomenona, we studied conditioned fear in mice originating form a bi-directional selective breeding approach, which is based on elevated plus-maze behavior and results in CD1-derived high (HAB), normal (NAB), and low (LAB) anxiety-related behavior mice. HAB mice displayed pronounced cued-conditioned fear compared to NAB/CD1 and LAB mice that coincided with increased phosphorylation of the protein kinase B (AKT) in the basolateral amygdala 45 min after conditioning. No similar changes were observed after non-associative immediate shock presentations. Fear extinction of recent but not older fear memories was preserved. However, HAB mice were more prone to relapse of conditioned fear with the passage of time. HAB mice also displayed higher levels of contextual fear compared to NAB and LAB mice and exaggerated avoidance following step-down avoidance training. Interestingly, HAB mice showed lower and LAB mice higher levels of acoustic startle responses compared to NAB controls. The increase in arousal observed in LAB mice coincided with the general absence of conditioned freezing. Taken together, our results suggest that the genetic predisposition to high anxiety-related behavior may increase the risk of forming traumatic memories, phobic-like fear and avoidance behavior following aversive encounters, with a clear bias towards passive coping styles. In contrast, genetic predisposition to low anxiety-related and high risk-taking behavior seems to be associated with an increase in active coping styles. Our data imply changes in AKT phosphorylation as a therapeutic target for the prevention of exaggerated fear memories.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Ansiedad/metabolismo , Reacción de Prevención/fisiología , Conducta Animal/fisiología , Condicionamiento Psicológico/fisiología , Miedo/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estimulación Acústica , Animales , Ansiedad/psicología , Señales (Psicología) , Modelos Animales de Enfermedad , Electrochoque , Extinción Psicológica/fisiología , Masculino , Ratones , Fosforilación
19.
Med Cannabis Cannabinoids ; 5(1): 61-75, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702403

RESUMEN

The development of a high-end cannabinoid-based therapy is the result of intense translational research, aiming to convert recent discoveries in the laboratory into better treatments for patients. Novel compounds and new regimes for drug treatment are emerging. Given that previously unreported signaling mechanisms for cannabinoids have been uncovered, clinical studies detailing their high therapeutic potential are mandatory. The advent of novel genomic, optogenetic, and viral tracing and imaging techniques will help to further detail therapeutically relevant functional and structural features. An evolutionarily highly conserved group of neuromodulatory lipids, their receptors, and anabolic and catabolic enzymes are involved in a remarkable variety of physiological and pathological processes and has been termed the endocannabinoid system (ECS). A large body of data has emerged in recent years, pointing to a crucial role of this system in the regulation of the behavioral domains of acquired fear, anxiety, and stress-coping. Besides neurons, also glia cells and components of the immune system can differentially fine-tune patterns of neuronal activity. Dysregulation of ECS signaling can lead to a lowering of stress resilience and increased incidence of psychiatric disorders. Chronic pain may be understood as a disease process evoked by fear-conditioned nociceptive input and appears as the dark side of neuronal plasticity. By taking a toll on every part of your life, this abnormal persistent memory of an aversive state can be more damaging than its initial experience. All strategies for the treatment of chronic pain conditions must consider stress-related comorbid conditions since cognitive factors such as beliefs, expectations, and prior experience (memory of pain) are key modulators of the perception of pain. The anxiolytic and anti-stress effects of medical cannabinoids can substantially modulate the efficacy and tolerability of therapeutic interventions and will help to pave the way to a successful multimodal therapy. Why some individuals are more susceptible to the effects of stress remains to be uncovered. The development of personalized prevention or treatment strategies for anxiety and depression related to chronic pain must also consider gender differences. An emotional basis of chronic pain opens a new horizon of opportunities for developing treatment strategies beyond the repeated sole use of acutely acting analgesics. A phase I trial to determine the pharmacokinetics, psychotropic effects, and safety profile of a novel nanoparticle-based cannabinoid spray for oromucosal delivery highlights a remarkable innovation in galenic technology and urges clinical studies further detailing the huge therapeutic potential of medical cannabis (Lorenzl et al.; this issue).

20.
Front Pharmacol ; 13: 898548, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313373

RESUMEN

Cognitive flexibility, the ability to adapt to unexpected changes, is critical for healthy environmental and social interactions, and thus to everyday functioning. In neuropsychiatric diseases, cognitive flexibility is often impaired and treatment options are lacking. Probabilistic reversal learning (PRL) is commonly used to measure cognitive flexibility in rodents and humans. In PRL tasks, subjects must sample choice options and, from probabilistic feedback, find the current best choice which then changes without warning. However, in rodents, pharmacological models of human cognitive impairment tend to disrupt only the first (or few) of several contingency reversals, making quantitative assessment of behavioral effects difficult. To address this limitation, we developed a novel rat PRL where reversals occur at relatively long intervals in time that demonstrates increased sensitivity to the non-competitive NMDA receptor antagonist MK-801. Here, we quantitively compare behavior in time-based PRL with a widely used task where reversals occur based on choice behavior. In time-based PRL, MK-801 induced sustained reversal learning deficits both in time and across reversal blocks but, at the same dose, only transient weak effects in performance-based PRL. Moreover, time-based PRL yielded better estimates of behavior and reinforcement learning model parameters, which opens meaningful pharmacological windows to efficiently test and develop novel drugs preclinically with the goal of improving cognitive impairment in human patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA