RESUMEN
OBJECTIVES: Since its implementation 50 years ago in Quebec, Canada, newborn screening for congenital hypothyroidism has become one of the most successful public health measures worldwide. Screening programmes across Australia and New Zealand are characterised by significant commonalities in screening algorithms, and a high degree of regional cooperation in harmonisation efforts. We aimed to conduct a comprehensive survey of current performance and practices related to the total testing process for congenital hypothyroidism screening and provide recommendations for harmonisation priorities within our region. METHODS: A survey was conducted involving the six newborn screening laboratories which provide complete geographic coverage across Australasia. Approximately 360,000 newborns are screened annually. Survey questions incorporated pre-analytical, analytical, and post-analytical aspects of the screening programmes and an extensive 5-year (2016-2020) retrospective analysis of individual programme performance data. Responses from individual screening programmes were collated. RESULTS: The uptake of newborn screening was over 98% for the six major jurisdictions. All programmes have adopted a single-tier thyroid stimulating hormone (TSH) strategy using the Perkin Elmer GSP instrument. Significant similarities exist between programmes for recommended age of collection and recollection protocols for low birthweight newborns. The process for the determination of TSH cutoffs varies between programmes. TSH lower cut-offs for borderline-positive and positive notifications between 12-15 and 12-25 mIU/L blood, respectively. Recall rates vary between 0.08 and 0.20%. The case definition for congenital hypothyroidism generally includes biochemical and radiological parameters in addition to the commencement of thyroxine. All programmes reported collecting biochemical and clinical data on infants with positive screening tests, and positive predictive values vary between 23.6 and 77.3%. Variation in reported incidence (1:1,300-2,000) cannot be entirely explained by cutoff or recall rate (although one programme reporting fewer cases includes only permanent disease). CONCLUSIONS: Despite similarities between newborn screening algorithms for congenital hypothyroidism across Australia and New Zealand, differences in reported programme performance provide the basis for further harmonisation. Surveillance of a large population offers the potential for the ongoing development of evidence-based screening guidelines.
Asunto(s)
Hipotiroidismo Congénito , Australasia , Humanos , Lactante , Recién Nacido , Tamizaje Neonatal , Estudios Retrospectivos , Tirotropina , TiroxinaRESUMEN
Fragile X syndrome (FXS) is a leading single-gene cause of intellectual disability (ID) with autism features. This study analysed diagnostic and prognostic utility of the Fragile X-Related Epigenetic Element 2 DNA methylation (FREE2m) assessed by Methylation Specific-Quantitative Melt Analysis and the EpiTYPER system, in retrospectively retrieved newborn blood spots (NBS) and newly created dried blood spots (DBS) from 65 children with FXS (~2-17 years). A further 168 NBS from infants from the general population were used to establish control reference ranges, in both sexes. FREE2m analysis showed sensitivity and specificity approaching 100%. In FXS males, NBS FREE2m strongly correlated with intellectual functioning and autism features, however associations were not as strong for FXS females. Fragile X mental retardation 1 gene (FMR1) mRNA levels in blood were correlated with FREE2m in both NBS and DBS, for both sexes. In females, DNAm was significantly increased at birth with a decrease in childhood. The findings support the use of FREE2m analysis in newborns for screening, diagnostic and prognostic testing in FXS.
Asunto(s)
Trastorno Autístico/genética , Metilación de ADN/genética , Síndrome del Cromosoma X Frágil/genética , Discapacidad Intelectual/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Epigénesis Genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Lactante , Recién Nacido , Masculino , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
PURPOSE: Developmental delay phenotypes have been associated with FMR1 premutation (PM: 55-200 CGG repeats) and "gray zone" (GZ: 45-54 CGG repeats) alleles. However, these associations have not been confirmed by larger studies to be useful in pediatric diagnostic or screening settings. METHODS: This study determined the prevalence of PM and GZ alleles in two independent cohorts of 19,076 pediatric referrals to developmental delay diagnostic testing through Victorian Clinical Genetics Service (cohort 1: N = 10,235; cohort 2: N = 8841), compared with two independent general population cohorts (newborn screening N = 1997; carrier screening by the Victorian Clinical Genetics Service prepair program N = 14,249). RESULTS: PM and GZ prevalence rates were not significantly increased (p > 0.05) in either developmental delay cohort (male PM: 0.12-0.22%; female PM: 0.26-0.33%; male GZ: 0.68-0.69%; female GZ: 1.59-2.13-%) compared with general population cohorts (male PM: 0.20%; female PM: 0.27-0.82%; male GZ: 0.79%; female GZ: 1.43-2.51%). Furthermore, CGG size distributions were comparable across datasets, with each having a modal value of 29 or 30 and ~1/3 females and ~1/5 males having at least one allele with ≤26 CGG repeats. CONCLUSION: These data do not support the causative link between PM and GZ expansions and developmental-delay phenotypes in pediatric settings.
Asunto(s)
Discapacidades del Desarrollo/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Expansión de Repetición de Trinucleótido/genética , Adolescente , Alelos , Niño , Preescolar , Discapacidades del Desarrollo/epidemiología , Discapacidades del Desarrollo/fisiopatología , Femenino , Síndrome del Cromosoma X Frágil/fisiopatología , Pruebas Genéticas , Genética de Población , Humanos , Lactante , Recién Nacido , Masculino , Mutación , Caracteres SexualesRESUMEN
BACKGROUND: Standard fragile X syndrome (FXS) diagnostic tests that target methylation of the fragile X mental retardation 1 (FMR1) CpG island 5' of the CGG expansion can be used to predict severity of the disease in males from birth, but not in females. METHODS: We describe methylation specific-quantitative melt analysis (MS-QMA) that targets 10 CpG sites, with 9 within FMR1 intron 1, to screen for FXS from birth in both sexes. The novel method combines the qualitative strengths of high-resolution melt and the high-throughput, quantitative real-time PCR standard curve to provide accurate quantification of DNA methylation in a single assay. Its performance was assessed in 312 control (CGG <40), 143 premutation (PM) (CGG 56-170), 197 full mutation (FM) (CGG 200-2000), and 33 CGG size and methylation mosaic samples. RESULTS: In male and female newborn blood spots, MS-QMA differentiated FM from control alleles, with sensitivity, specificity, and positive and negative predictive values between 92% and 100%. In venous blood of FM females between 6 and 35 years of age, MS-QMA correlated most strongly with verbal IQ impairment (P = 0.002). In the larger cohort of males and females, MS-QMA correlated with reference methods Southern blot and MALDI-TOF mass spectrometry (P < 0.05), but was not significantly correlated with age. Unmethylated alleles in high-functioning FM and PM males determined by both reference methods were also unmethylated by MS-QMA. CONCLUSIONS: MS-QMA has an immediate application in FXS diagnostics, with a potential use of its quantitative methylation output for prognosis in both sexes.
Asunto(s)
Síndrome del Cromosoma X Frágil/diagnóstico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Niño , Preescolar , Cognición , Estudios de Cohortes , Pruebas con Sangre Seca , Diagnóstico Precoz , Epigénesis Genética , Femenino , Síndrome del Cromosoma X Frágil/sangre , Síndrome del Cromosoma X Frágil/genética , Humanos , Lactante , Recién Nacido , Intrones , Masculino , Metilación , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Sensibilidad y EspecificidadRESUMEN
BACKGROUND: The fragile X syndrome (FXS) results from mutation of the FMR1 gene that prevents expression of its gene product, FMRP. We previously characterized 215 dried blood spots (DBS) representing different FMR1 genotypes and ages with a Luminex-based immunoassay (qFMRP). We found variable FMRP levels in the normal samples and identified affected males by the drastic reduction of FMRP. METHODS: Here, to establish the variability of expression of FMRP in a larger random population we quantified FMRP in 2,000 anonymous fresh newborn DBS. We also evaluated the effect of long term storage on qFMRP by retrospectively assaying 74 aged newborn DBS that had been stored for 7-84 months that included normal and full mutation individuals. These analyses were performed on 3 mm DBS disks. To identify the alleles associated with the lowest FMRP levels in the fresh DBS, we analyzed the DNA in the samples that were more than two standard deviations below the mean. RESULTS: Analysis of the fresh newborn DBS revealed a broad distribution of FMRP with a mean approximately 7-fold higher than that we previously reported for fresh DBS in normal adults and no samples whose FMRP level indicated FXS. DNA analysis of the lowest FMRP DBS showed that this was the low extreme of the normal range and included a female carrying a 165 CGG repeat premutation. In the retrospective study of aged newborn DBS, the FMRP mean of the normal samples was less than 30% of the mean of the fresh DBS. Despite the degraded signal from these aged DBS, qFMRP identified the FXS individuals. CONCLUSIONS: The assay showed that newborn DBS contain high levels of FMRP that will allow identification of males and potentially females, affected by FXS. The assay is also an effective screening tool for aged DBS stored for up to four years.
Asunto(s)
Pruebas con Sangre Seca/métodos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/sangre , Síndrome del Cromosoma X Frágil/sangre , Conservación de la Sangre , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos , Recién Nacido , Masculino , Estudios Retrospectivos , Factores de TiempoRESUMEN
Despite the availability of life-saving corticosteroids for 70 years, treatment for adrenal insufficiency is not able to recapitulate physiological diurnal cortisol secretion and results in numerous complications. Gene therapy is an attractive possibility for monogenic adrenocortical disorders such as congenital adrenal hyperplasia; however, requires further development of gene transfer/editing technologies and knowledge of the target progenitor cell populations. Vectors based on adeno-associated virus are the leading system for direct in vivo gene delivery but have limitations in targeting replicating cell populations such as in the adrenal cortex. One strategy to overcome this technological limitation is to deliver the relevant adrenocortical gene to a currently targetable organ outside of the adrenal cortex. To explore this possibility, we developed a vector encoding human 21-hydroxylase and directed expression to the liver in a mouse model of congenital adrenal hyperplasia. This extra-adrenal expression resulted in reconstitution of the steroidogenic pathway. Aldosterone and renin levels normalized, and corticosterone levels improved sufficiently to reduce adrenal hyperplasia. This strategy could provide an alternative treatment option for monogenic adrenal disorders, particularly for mineralocorticoid defects. These findings also demonstrate, when targeting the adrenal gland, that inadvertent liver transduction should be precluded as it may confound data interpretation.
RESUMEN
A greater number of screened conditions is often considered to equate to better screening, whereas it may be due to conditions being counted differently. This manuscript describes a harmonised Australasian approach to listing target conditions found on bloodspot screening panels. Operational definitions for target disorders and incidental findings were developed and applied to disorder lists. A gap analysis was performed between five, state-based Australian newborn screening programme disorder lists and the single national New Zealand and state-level Californian versions. Screening panels were found to be broadly similar. Gap analysis with Californian data reflected differences in jurisdictional approval (for example, haemoglobinopathies and lysosomal disorders not being recommended in Australasia). Differences amongst Australasian panels reflected varied the timeframes recommended in order to implement newly approved disorders, as well as decisions to remove previously screened disorders. A harmonised approach to disorder counting is essential to performing valid comparisons of newborn bloodspot screening panels.
RESUMEN
PURPOSE: We show that a novel fragile X-related epigenetic element 2 FMR1 methylation test can be used along with a test for sex-determining region Y (SRY) to provide the option of combined fragile X syndrome and sex chromosome aneuploidy newborn screening. METHODS: Fragile X-related epigenetic element 2, SRY, and FMR1 CGG repeat analyses were performed on blood and saliva DNA, and in adult and newborn blood spots. The cohort consisted of 159 controls (CGG <40), 187 premutation (CGG 56-170), and 242 full-mutation (CGG ~200-2,000) males and females, 106 sex chromosome aneuploidy individuals, and 151 cytogenetically normal controls. RESULTS: At the 0.435 threshold, fragile X-related epigenetic element 2 analysis in males was robust on both blood DNA and newborn blood spots, with specificity and sensitivity of ~100% for full-mutation genotype. In females, the specificity was 99%, whereas half of full-mutation females were above the 0.435 threshold in both blood DNA and newborn blood spots. Furthermore, at this threshold, the test could not differentiate individuals with Klinefelter syndrome from female controls without using the SRY marker. When combined with SRY analysis, the test was consistent with most results for sex chromosome aneuploidies from karyotyping. CONCLUSION: Setting specific thresholds for fragile X-related epigenetic element 2 analysis and including the SRY marker provides the option to either include or exclude detection of sex chromosome aneuploidies as part of fragile X syndrome newborn screening.
Asunto(s)
Aneuploidia , Islas de CpG , Metilación de ADN , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/diagnóstico , Síndrome del Cromosoma X Frágil/genética , Intrones , Aberraciones Cromosómicas Sexuales , Adolescente , Adulto , Anciano , Alelos , Línea Celular , Niño , Preescolar , Femenino , Dosificación de Gen , Genes sry , Pruebas Genéticas/economía , Pruebas Genéticas/métodos , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Tamizaje Neonatal/economía , Tamizaje Neonatal/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Expansión de Repetición de Trinucleótido/genética , Adulto JovenRESUMEN
Although fragile X syndrome (FXS) is the commonest cause of inherited intellectual disability the mean age of diagnosis in Australia is 5.5 years. Newborn screening for FXS can provide an early diagnosis, preventing the "diagnostic odyssey", allowing access to early interventions, and providing reproductive information for parents. Parents of affected children support newborn screening, but few clinical studies have evaluated community attitudes. A pilot study in 2009-2010 was performed in a tertiary hospital to explore feasibility and maternal attitudes. FXS testing of male and female newborns was offered to mothers in addition to routine newborn screening. Mothers were provided with information about FXS, inheritance pattern, carrier status, and associated adult-onset disorders. One thousand nine hundred seventy-one of 2,094 mothers (94%) consented to testing of 2,000 newborns. 86% completed the attitudinal survey and 10% provided written comments. Almost all parents (99%) elected to be informed of both premutation and full mutation status and there was little concern about identification of carrier status or associated adult-onset disorders. Most mothers (96%) were comfortable being approached in the postnatal period and supported testing because no extra blood test was required. Mothers considered an early diagnosis beneficial to help prepare for a child with additional needs (93%) and for reproductive planning (64%). Some were anxious about the potential test results (10%) and others felt their feelings towards their newborn may change if diagnosed with FXS (16%). High participation rates and maternal attitudes indicate a high level of maternal acceptance and voluntary support for newborn screening for FXS.
Asunto(s)
Actitud Frente a la Salud , Síndrome del Cromosoma X Frágil/diagnóstico , Madres/psicología , Tamizaje Neonatal/psicología , Adulto , Australia/epidemiología , Diagnóstico Precoz , Femenino , Síndrome del Cromosoma X Frágil/epidemiología , Síndrome del Cromosoma X Frágil/genética , Pruebas Genéticas , Humanos , Incidencia , Recién Nacido , Masculino , Relaciones Padres-Hijo , Encuestas y Cuestionarios , Adulto JovenRESUMEN
BACKGROUND: Hyperphenylalaninemia is a biomarker for several monogenic neurotransmitter disorders where the body cannot metabolise phenylalanine to tyrosine. Biallelic pathogenic variants in DNAJC12, co-chaperone of phenylalanine, tyrosine, and tryptophan hydroxylases, leads to hyperphenylalaninemia and biogenic amines deficiency. METHODS AND RESULTS: A male firstborn to non-consanguineous Sudanese parents had hyperphenylalaninemia 247 µmol/L [reference interval (RI) < 200 µmol/L] at newborn screening. Dried blood spot dihydropteridine reductase (DHPR) assay and urine pterins were normal. He had severe developmental delay and autism spectrum disorder without a notable movement disorder. A low phenylalanine diet was introduced at two years without any clinical improvements. Cerebrospinal fluid (CSF) neurotransmitters at five years demonstrated low homovanillic acid (HVA) 0.259 µmol/L (reference interval (RI) 0.345-0.716) and 5-hydroxyindoleaetic acid (5HIAA) levels 0.024 µmol/L (reference interval (RI) 0.100-0.245). Targeted neurotransmitter gene panel analysis identified a homozygous c.78 + 1del variant in DNAJC12. At six years, he was commenced on 5-hydroxytryptophan 20 mg daily, and his protein-restricted diet was liberalised, with continued good control of phenylalanine levels. Sapropterin dihydrochloride 7.2 mg/kg/day was added the following year with no observable clinical benefits. He remains globally delayed with severe autistic traits. CONCLUSIONS: Urine, CSF neurotransmitter studies, and genetic testing will differentiate between phenylketonuria, tetrahydrobiopterin or DNAJC12 deficiency, with the latter characterised by a clinical spectrum ranging from mild autistic features or hyperactivity to severe intellectual disability, dystonia, and movement disorder, normal DHPR, reduced CSF HIAA and HVA. DNAJC12 deficiency should be considered early in the differential workup of hyperphenylalaninemia identified from newborn screening, with its genotyping performed once deficiencies of phenylalanine hydroxylase (PAH) and tetrahydrobiopterin (BH4) have been biochemically or genetically excluded.
Asunto(s)
Trastorno del Espectro Autista , Trastornos del Movimiento , Fenilcetonurias , Recién Nacido , Humanos , Masculino , Fenilcetonurias/genética , Tirosina , Ácido Homovanílico/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Biopterinas/metabolismo , Neurotransmisores/metabolismoRESUMEN
A pilot newborn screening (NBS) program for Duchenne muscular dystrophy (DMD) study proposes to assess the feasibility of the screening procedure, temporal course of the various steps of screening, and the public acceptability of the program. This is particularly vital to ascertain as DMD is considered a 'non-treatable' disease and thus does not fit the traditional criteria for newborn screening. However, modern perspectives of NBS for DMD are changing and point to possible net benefits for children and their families undertaking NBS for DMD. The aim of this workshop was to establish pathways for the successful implementation and evaluation of a pilot NBS for DMD program in Australia. Consensus was reached as to the rationale for, potential benefits, risks, barriers and facilitators of screening, alongside the establishment of screening protocols and clinical referral pathways.
Asunto(s)
Distrofia Muscular de Duchenne , Recién Nacido , Niño , Humanos , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/terapia , Tamizaje Neonatal/métodos , Australia , Derivación y ConsultaRESUMEN
Fragile X syndrome (FXS) is the most prevalent heritable cause of cognitive impairment but is not yet included in a newborn screening (NBS) program within Australia. This paper aims to assess the feasibility and reliability of population screening for FXS using a pilot study in one hospital. A total of 1971 mothers consented for 2000 newborns to be tested using routine NBS dried blood spot samples. DNA was extracted and a modified PCR assay with a chimeric CGG primer was used to detect fragile X alleles in both males and females in the normal, premutation, and full mutation ranges. A routine PCR-based fragile X assay was run in parallel to validate the chimeric primer assay. Babies with CGG repeat number ≥59 were referred for family studies. One thousand nine hundred and ninety NBS samples had a CGG repeat number less than 55 (1986 < 50); 10 had premutation alleles >54 CGG repeats (1/123 females and 1/507 males). There was complete concordance between the two PCR-based assays. A recent review revealed no clinically identified cases in the cohort up to 5 years later. The cost per test was $AUD19. Fragile X status can be determined on routine NBS samples using the chimeric primer assay. However, whilst this assay may not be considered cost-effective for population screening, it could be considered as a second-tier assay to a developed immunoassay for fragile X mental retardation protein (FMRP).
RESUMEN
Over 50 years after the introduction of a blood-spot newborn screening test using the bacterial-inhibition assay (BIA), blood-spot newborn screening has evolved into complex public service scientific programmes. For several decades, many patients with phenylketonuria (PKU), congenital hypothyroidism (CH), cystic fibrosis (CF) and hemoglobinopathy disorders have benefited from early intervention across the world. In the last 20 years, there have been great changes in laboratory techniques and high-throughput data handling meaning that a huge spectrum of disorders can be identified from an increasing population. This coupled with the fact that there are an increasing number of therapies for specific rare disorders mean that health services may become inundated with complex and expensive demands in the future. Some of these issues have been realised in the implementation of multiplex assay such as electrospray tandem mass spectrometry (MSMS) programmes but will be much more exaggerated if genomic sequencing screening becomes a reality. In this context, the core-principles for implementation of newborn screening tests remain as important today as they have in the past when new tests are considered as part of the blood-spot screening programme.
RESUMEN
Expanded newborn screening (NBS) leads to an increased number of false positive results, causing parental anxiety, greater follow-up costs, and the need for further metabolic investigations. We developed and validated a second-tier approach for NBS of homocystinurias by measuring the total homocysteine (tHcy) on the initial dried blood spot (DBS) samples to reduce the need for further investigation, and investigated newborn DBS homocysteine values in patients with homocystinuria. Total DBS homocysteine was measured in normal newborns, and retrospectively in newborns with established disorders, using liquid chromatography tandem mass spectrometry (LC-MS/MS) with stable isotope-labelled internal standards for homocysteine. Analytes were separated using reverse phase chromatography with a total run time of 3 min. The method was linear over the range of 10-100 µmol/L of tHcy and showed excellent precision; intra-batch CV was 4% and inter-batch precision 6.5%. Comparison of 59 plasma values with DBS for tHcy taken at the same time showed excellent correlation, (r (2)>0.97). The reference range for current neonatal samples was 5.4-10.7 µmol/L (n=99), and for the stored neonatal samples (stored dry, sealed in plastic at room temperature for 10 years) was 1.7-5.5 µmol/L, (n=50), both being normally distributed. The clinical utility of this method was checked by retrospective analysis of stored NBS samples from patients with different forms of homocystinuria, including four different remethylating disorders. All had clear elevations of tHcy.