Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 138(4): 722-37, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19703398

RESUMEN

Pluripotency is generated naturally during mammalian development through formation of the epiblast, founder tissue of the embryo proper. Pluripotency can be recreated by somatic cell reprogramming. Here we present evidence that the homeodomain protein Nanog mediates acquisition of both embryonic and induced pluripotency. Production of pluripotent hybrids by cell fusion is promoted by and dependent on Nanog. In transcription factor-induced molecular reprogramming, Nanog is initially dispensable but becomes essential for dedifferentiated intermediates to transit to ground state pluripotency. In the embryo, Nanog specifically demarcates the nascent epiblast, coincident with the domain of X chromosome reprogramming. Without Nanog, pluripotency does not develop, and the inner cell mass is trapped in a pre-pluripotent, indeterminate state that is ultimately nonviable. These findings suggest that Nanog choreographs synthesis of the naive epiblast ground state in the embryo and that this function is recapitulated in the culmination of somatic cell reprogramming.


Asunto(s)
Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Adultas/citología , Animales , Blastocisto/citología , Desdiferenciación Celular , Células Madre Embrionarias/citología , Femenino , Estratos Germinativos/citología , Proteínas de Homeodominio/genética , Ratones , Proteína Homeótica Nanog , Cromosoma X/metabolismo
2.
Nature ; 453(7194): 519-23, 2008 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-18497825

RESUMEN

In the three decades since pluripotent mouse embryonic stem (ES) cells were first described they have been derived and maintained by using various empirical combinations of feeder cells, conditioned media, cytokines, growth factors, hormones, fetal calf serum, and serum extracts. Consequently ES-cell self-renewal is generally considered to be dependent on multifactorial stimulation of dedicated transcriptional circuitries, pre-eminent among which is the activation of STAT3 by cytokines (ref. 8). Here we show, however, that extrinsic stimuli are dispensable for the derivation, propagation and pluripotency of ES cells. Self-renewal is enabled by the elimination of differentiation-inducing signalling from mitogen-activated protein kinase. Additional inhibition of glycogen synthase kinase 3 consolidates biosynthetic capacity and suppresses residual differentiation. Complete bypass of cytokine signalling is confirmed by isolating ES cells genetically devoid of STAT3. These findings reveal that ES cells have an innate programme for self-replication that does not require extrinsic instruction. This property may account for their latent tumorigenicity. The delineation of minimal requirements for self-renewal now provides a defined platform for the precise description and dissection of the pluripotent state.


Asunto(s)
Células Madre Embrionarias/citología , Regeneración/fisiología , Animales , Benzamidas/farmacología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Difenilamina/análogos & derivados , Difenilamina/farmacología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Piridinas/farmacología , Pirimidinas/farmacología , Regeneración/efectos de los fármacos , Factor de Transcripción STAT3/deficiencia , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
3.
PLoS Genet ; 7(4): e1002019, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21490948

RESUMEN

Mouse embryonic stem (ES) cells are defined by their capacity to self-renew and their ability to differentiate into all adult tissues including the germ line. Along with efficient clonal propagation, these properties have made them an unparalleled tool for manipulation of the mouse genome. Traditionally, mouse ES (mES) cells have been isolated and cultured in complex, poorly defined conditions that only permit efficient derivation from the 129 mouse strain; genuine ES cells have not been isolated from another species in these conditions. Recently, use of small molecule inhibitors of glycogen synthase kinase 3 (Gsk3) and the Fgf-MAPK signaling cascade has permitted efficient derivation of ES cells from all tested mouse strains. Subsequently, the first verified ES cells were established from a non-mouse species, Rattus norvegicus. Here, we summarize the advances in our understanding of the signaling pathways regulating mES cell self-renewal that led to the first derivation of rat ES cells and highlight the new opportunities presented for transgenic modeling on diverse genetic backgrounds. We also comment on the implications of this work for our understanding of pluripotent stem cells across mammalian species.


Asunto(s)
Células Madre Embrionarias/fisiología , Animales , Células Cultivadas , Humanos , Transducción de Señal/fisiología
4.
Nat Commun ; 13(1): 7124, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411286

RESUMEN

The ETV6-RUNX1 onco-fusion arises in utero, initiating a clinically silent pre-leukemic state associated with the development of pediatric B-acute lymphoblastic leukemia (B-ALL). We characterize the ETV6-RUNX1 regulome by integrating chromatin immunoprecipitation- and RNA-sequencing and show that ETV6-RUNX1 functions primarily through competition for RUNX1 binding sites and transcriptional repression. In pre-leukemia, this results in ETV6-RUNX1 antagonization of cell cycle regulation by RUNX1 as evidenced by mass cytometry analysis of B-lineage cells derived from ETV6-RUNX1 knock-in human pluripotent stem cells. In frank leukemia, knockdown of RUNX1 or its co-factor CBFß results in cell death suggesting sustained requirement for RUNX1 activity which is recapitulated by chemical perturbation using an allosteric CBFß-inhibitor. Strikingly, we show that RUNX1 addiction extends to other genetic subtypes of pediatric B-ALL and also adult disease. Importantly, inhibition of RUNX1 activity spares normal hematopoiesis. Our results suggest that chemical intervention in the RUNX1 program may provide a therapeutic opportunity in ALL.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Niño , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Factores de Unión al Sitio Principal , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Linfocitos B , Fusión Génica
5.
Biochem Soc Trans ; 38(4): 1027-32, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20658998

RESUMEN

Pluripotency is defined as the capacity of individual cells to initiate all lineages of the mature organism in response to signals from the embryo or cell culture environment. A pluripotent cell has no predetermined programme; it is a blank slate. This is the foundation of mammalian development and of ES (embryonic stem) cell biology. What are the design principles of this naïve cell state? How is pluripotency acquired and maintained? Suppressing activation of ERKs (extracellular-signal-regulated kinases) is critical to establishing and sustaining ES cells. Inhibition of GSK3 (glycogen synthase kinase 3) reinforces this effect. We review the effect of selective kinase inhibitors on pluripotent cells and consider how these effects are mediated. We propose that ES cells represent a ground state, meaning a basal proliferative state that is free of epigenetic restriction and has minimal requirements for extrinsic stimuli. The stability of this state is reflected in the homogeneity of ES cell populations cultured in the presence of small-molecule inhibitors of MEK (mitogen-activated protein kinase/ERK kinase) and GSK3.


Asunto(s)
Células Madre Pluripotentes/fisiología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Proliferación Celular , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/fisiología , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Factor 4 de Crecimiento de Fibroblastos/fisiología , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Humanos , Células Madre Pluripotentes/metabolismo , Transducción de Señal/fisiología
6.
Biochim Biophys Acta Mol Cell Res ; 1867(7): 118691, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32119877

RESUMEN

Actin dynamics regulate cell behaviour in response to physiological signals. Here we demonstrate a novel role for nuclear actin in inhibiting cell proliferation and migration. We demonstrate that physiological signals that elevate cAMP, which is anti-mitogenic in vascular smooth muscle cells, increases nuclear actin monomer levels. Expression of a nuclear-targeted polymerisation-defective actin mutant (NLS-ActinR62D) inhibited proliferation and migration. Preventing nuclear actin monomer accumulation by enhancing its nuclear export or polymerisation reversed the anti-mitogenic and anti-migratory effects of cAMP. Transcriptomic analysis identified repression of proliferation and migration associated genes regulated by serum response factor (SRF) and TEA Domain (TEAD) transcription factors. Accordingly, NLS-ActinR62D inhibited SRF and TEAD activity and target gene expression, and these effects were reversed by constitutively-active mutants of the TEAD and SRF co-factors YAP, TAZ and MKL1. In summary, intranuclear actin inhibits proliferation and migration by inhibiting YAP-TEAD and MKL-SRF activity. This mechanism explains the anti-mitogenic and anti-migratory properties of physiological signals that elevate cAMP. SUMMARY: McNeill et al show that increased levels of intranuclear actin monomer inhibit cell proliferation and migration by inhibiting MKL1-SRF and YAP/TAZ-TEAD-dependent gene expression. This mechanism mediates the anti-mitogenic and anti-migratory effects of physiological signals that elevate cyclic-AMP.


Asunto(s)
Actinas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Unión al ADN/genética , Proteínas Nucleares/genética , Factor de Respuesta Sérica/genética , Factores de Transcripción/genética , Movimiento Celular/genética , Núcleo Celular/genética , Proliferación Celular/genética , AMP Cíclico/genética , Regulación de la Expresión Génica/genética , Humanos , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
7.
Nat Commun ; 11(1): 4989, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020476

RESUMEN

We postulate that exit from pluripotency involves intermediates that retain pluripotency while simultaneously exhibiting lineage-bias. Using a MIXL1 reporter, we explore mesoderm lineage-bias within the human pluripotent stem cell compartment. We identify a substate, which at the single cell level coexpresses pluripotent and mesodermal gene expression programmes. Functionally these cells initiate stem cell cultures and exhibit mesodermal bias in differentiation assays. By promoting mesodermal identity through manipulation of WNT signalling while preventing exit from pluripotency using lysophosphatidic acid, we 'trap' and maintain cells in a lineage-biased stem cell state through multiple passages. These cells correspond to a normal state on the differentiation trajectory, the plasticity of which is evidenced by their reacquisition of an unbiased state upon removal of differentiation cues. The use of 'cross-antagonistic' signalling to trap pluripotent stem cell intermediates with different lineage-bias may have general applicability in the efficient production of cells for regenerative medicine.


Asunto(s)
Reprogramación Celular , Mesodermo/metabolismo , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular/genética , Línea Celular , Linaje de la Célula , Plasticidad de la Célula/genética , Autorrenovación de las Células , Medios de Cultivo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Ratones , Células Madre Pluripotentes/metabolismo , Transducción de Señal/genética
8.
Biochim Biophys Acta Mol Cell Res ; 1866(10): 1634-1649, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31255721

RESUMEN

Ligand-induced activation of Exchange Protein Activated by cAMP-1 (EPAC1) is implicated in numerous physiological and pathological processes, including cardiac fibrosis where changes in EPAC1 expression have been detected. However, little is known about how EPAC1 expression is regulated. Therefore, we investigated regulation of EPAC1 expression by cAMP in cardiac fibroblasts. Elevation of cAMP using forskolin, cAMP-analogues or adenosine A2B-receptor activation significantly reduced EPAC1 mRNA and protein levels and inhibited formation of F-actin stress fibres. Inhibition of actin polymerisation with cytochalasin-D, latrunculin-B or the ROCK inhibitor, Y-27632, mimicked effects of cAMP on EPAC1 mRNA and protein levels. Elevated cAMP also inhibited activity of an EPAC1 promoter-reporter gene, which contained a consensus binding element for TEAD, which is a target for inhibition by cAMP. Inhibition of TEAD activity using siRNA-silencing of its co-factors YAP and TAZ, expression of dominant-negative TEAD or treatment with YAP-TEAD inhibitors, significantly inhibited EPAC1 expression. However, whereas expression of constitutively-active YAP completely reversed forskolin inhibition of EPAC1-promoter activity it did not rescue EPAC1 mRNA levels. Chromatin-immunoprecipitation detected a significant reduction in histone3-lysine27-acetylation at the EPAC1 proximal promoter in response to forskolin stimulation. HDAC1/3 inhibition partially reversed forskolin inhibition of EPAC1 expression, which was completely rescued by simultaneously expressing constitutively active YAP. Taken together, these data demonstrate that cAMP downregulates EPAC1 gene expression via disrupting the actin cytoskeleton, which inhibits YAP/TAZ-TEAD activity in concert with HDAC-mediated histone deacetylation at the EPAC1 proximal promoter. This represents a novel negative feedback mechanism controlling EPAC1 levels in response to cAMP elevation.


Asunto(s)
AMP Cíclico/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Procesamiento Proteico-Postraduccional , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Amidas , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/metabolismo , Técnicas de Cultivo de Célula , Línea Celular , Citocalasina D/metabolismo , Fibroblastos/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Histonas/metabolismo , Humanos , Masculino , Piridinas , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Tiazolidinas/metabolismo
9.
Dev Cell ; 44(3): 362-377.e7, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29290585

RESUMEN

ETV6-RUNX1 is associated with childhood acute B-lymphoblastic leukemia (cALL) functioning as a first-hit mutation that initiates a clinically silent pre-leukemia in utero. Because lineage commitment hierarchies differ between embryo and adult, and the impact of oncogenes is cell-context dependent, we hypothesized that the childhood affiliation of ETV6-RUNX1 cALL reflects its origins in a progenitor unique to embryonic life. We characterize the first emerging B cells in first-trimester human embryos, identifying a developmentally restricted CD19-IL-7R+ progenitor compartment, which transitions from a myeloid to lymphoid program during ontogeny. This developmental series is recapitulated in differentiating human pluripotent stem cells (hPSCs), thereby providing a model for the initiation of cALL. Genome-engineered hPSCs expressing ETV6-RUNX1 from the endogenous ETV6 locus show expansion of the CD19-IL-7R+ compartment, show a partial block in B lineage commitment, and produce proB cells with aberrant myeloid gene expression signatures and potential: features (collectively) consistent with a pre-leukemic state.


Asunto(s)
Linfocitos B/patología , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Desarrollo Embrionario , Regulación Leucémica de la Expresión Génica , Células Madre Pluripotentes Inducidas/patología , Células Mieloides/patología , Proteínas de Fusión Oncogénica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Enfermedad Aguda , Linfocitos B/metabolismo , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Modelos Biológicos , Células Mieloides/metabolismo , Proteínas de Fusión Oncogénica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Embarazo , Primer Trimestre del Embarazo , Receptores de Interleucina-7 , Transcriptoma
10.
Trends Cell Biol ; 22(3): 159-68, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22196214

RESUMEN

Embryonic stem cells (ESCs) - undifferentiated cells originating from preimplantation stage embryos - have prolonged self-renewal capacity and are pluripotent. Activation of the canonical Wnt pathway is implicated in maintenance of and exit from the pluripotent state. Recent findings demonstrate that the essential mediator of canonical Wnt signaling, ß-catenin, is dispensable for ESC maintenance; however, its activation inhibits differentiation through derepression of T cell factor 3 (Tcf3)-bound genes. Wnt agonists are useful in deriving ESCs from recalcitrant mouse strains and the rat and in nuclear reprogramming of somatic stem cells. We discuss recent advances in our understanding of the role of canonical Wnt signaling in the regulation of ESC self-renewal and how its manipulation can improve pluripotent ESC derivation and maintenance.


Asunto(s)
Células Madre Embrionarias/metabolismo , Vía de Señalización Wnt , Animales , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Humanos , Células Madre Pluripotentes/metabolismo , Proteínas Wnt/agonistas , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
11.
Nat Cell Biol ; 13(7): 838-45, 2011 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-21685889

RESUMEN

Self-renewal of rodent embryonic stem cells is enhanced by partial inhibition of glycogen synthase kinase-3 (Gsk3; refs 1, 2). This effect has variously been attributed to stimulation of Wnt signalling by ß-catenin, stabilization of Myc protein and global de-inhibition of anabolic processes. Here we demonstrate that ß-catenin is not necessary for embryonic stem cell identity or expansion, but its absence eliminates the self-renewal response to Gsk3 inhibition. Responsiveness is fully restored by truncated ß-catenin lacking the carboxy-terminal transactivation domain. However, requirement for Gsk3 inhibition is dictated by expression of T-cell factor 3 (Tcf3) and mediated by direct interaction with ß-catenin. Tcf3 localizes to many pluripotency genes in embryonic stem cells. Our findings confirm that Tcf3 acts as a transcriptional repressor and reveal that ß-catenin directly abrogates Tcf3 function. We conclude that Gsk3 inhibition stabilizes the embryonic stem cell state primarily by reducing repressive influence on the core pluripotency network.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Células Madre Pluripotentes/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Madre Embrionarias/enzimología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones , Células Madre Pluripotentes/enzimología , Interferencia de ARN , Proteínas Recombinantes de Fusión/metabolismo , Transfección , beta Catenina/genética , beta Catenina/metabolismo
12.
Cell Stem Cell ; 5(6): 597-609, 2009 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-19951688

RESUMEN

Embryonic stem cell (ESC) pluripotency is dependent on an intrinsic gene regulatory network centered on Oct4. Propagation of the pluripotent state is stimulated by the cytokine leukemia inhibitory factor (LIF) acting through the transcriptional regulator Stat3. Here, we show that this extrinsic stimulus converges with the intrinsic circuitry in Krüppel-factor activation. Oct4 primarily induces Klf2 while LIF/Stat3 selectively enhances Klf4 expression. Overexpression of either factor reduces LIF dependence, but with quantitative and qualitative differences. Unlike Klf4, Klf2 increases ESC clonogenicity, maintains undifferentiated ESCs in the genetic absence of Stat3, and confers resistance to BMP-induced differentiation. ESCs expanded with Klf2 remain capable of contributing to adult chimeras. Postimplantation-embryo-derived EpiSCs lack both Klf2 and Klf4 and expression of either can reinstate naive pluripotency. These findings indicate that Oct4 and Stat3 intersect in directing expression of Klf transcriptional regulators with overlapping properties that additively reinforce ground-state ESC pluripotency, identity, and self-renewal.


Asunto(s)
Células Madre Pluripotentes Inducidas/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Factor Inhibidor de Leucemia/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Proteína Morfogenética Ósea 4/metabolismo , Desdiferenciación Celular , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Quimera , Regulación del Desarrollo de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/patología , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Análisis por Micromatrices , Factor de Transcripción STAT3/genética , Activación Transcripcional , Proteína Gli2 con Dedos de Zinc
13.
Development ; 134(16): 2895-902, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17660198

RESUMEN

Pluripotent embryonic stem (ES) cells must select between alternative fates of self-replication and lineage commitment during continuous proliferation. Here, we delineate the role of autocrine production of fibroblast growth factor 4 (Fgf4) and associated activation of the Erk1/2 (Mapk3/1) signalling cascade. Fgf4 is the major stimulus activating Erk in mouse ES cells. Interference with FGF or Erk activity using chemical inhibitors or genetic ablations does not impede propagation of undifferentiated ES cells. Instead, such manipulations restrict the ability of ES cells to commit to differentiation. ES cells lacking Fgf4 or treated with FGF receptor inhibitors resist neural and mesodermal induction, and are refractory to BMP-induced non-neural differentiation. Lineage commitment potential of Fgf4-null cells is restored by provision of FGF protein. Thus, FGF enables rather than antagonises the differentiation activity of BMP. The key downstream role of Erk signalling is revealed by examination of Erk2-null ES cells, which fail to undergo either neural or mesodermal differentiation in adherent culture, and retain expression of pluripotency markers Oct4, Nanog and Rex1. These findings establish that Fgf4 stimulation of Erk1/2 is an autoinductive stimulus for naïve ES cells to exit the self-renewal programme. We propose that the Erk cascade directs transition to a state that is responsive to inductive cues for germ layer segregation. Consideration of Erk signalling as a primary trigger that potentiates lineage commitment provides a context for reconciling disparate views on the contribution of FGF and BMP pathways during germ layer specification in vertebrate embryos.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Factores de Crecimiento de Fibroblastos/farmacología , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células Madre Pluripotentes/efectos de los fármacos , Animales , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/genética , Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Factor 4 de Crecimiento de Fibroblastos/genética , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Organismos Modificados Genéticamente , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA