RESUMEN
BACKGROUND: Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS: To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS: We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.
Asunto(s)
Escherichia coli , Fosfatos de Poliisoprenilo , Escherichia coli/genética , Polisacáridos , BiotecnologíaRESUMEN
Glycoengineering of recombinant glycans and glycoconjugates is a rapidly evolving field. However, the production and exploitation of glycans has lagged behind that of proteins and nucleic acids. Biosynthetic glycoconjugate production requires the coordinated cooperation of three key components within a bacterial cell: a substrate protein, a coupling oligosaccharyltransferase, and a glycan biosynthesis locus. While the acceptor protein and oligosaccharyltransferase are the products of single genes, the glycan is a product of a multigene metabolic pathway. Typically, the glycan biosynthesis locus is cloned and transferred en bloc from the native organism to a suitable Escherichia coli strain. However, gene expression within these pathways has been optimized by natural selection in the native host and is unlikely to be optimal for heterologous production in an unrelated organism. In recent years, synthetic biology has addressed the challenges in heterologous expression of multigene systems by deconstructing these pathways and rebuilding them from the bottom up. The use of DNA assembly methods allows the convenient assembly of such pathways by combining defined parts with the requisite coding sequences in a single step. In this study, we apply combinatorial assembly to the heterologous biosynthesis of the Campylobacter jejuni N-glycosylation (pgl) pathway in E. coli. We engineered reconstructed biosynthesis clusters that faithfully reproduced the C. jejuni heptasaccharide glycan. Furthermore, following a single round of combinatorial assembly and screening, we identified pathway clones that outperform glycan and glycoconjugate production of the native unmodified pgl cluster. This platform offers a flexible method for optimal engineering of glycan structures in E. coli.
Asunto(s)
Campylobacter jejuni , Escherichia coli , Escherichia coli/genética , ADN , Glicosilación , Campylobacter jejuni/genética , PolisacáridosRESUMEN
The predation and engulfment of bacteria by Acanthamoebae facilitates intimate interactions between host and prey. This process plays an important and underestimated role in the physiology, ecology and evolution of pathogenic bacteria. Acanthamoebae species can be reservoirs for many important human pathogens including Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne enteritis worldwide, despite being a microaerophile that is incapable of withstanding atmospheric levels of oxygen long-term. The persistence and transmission of this major pathogen in the natural environment outside its avian and mammalian hosts is not fully understood. Recent evidence has provided insight into the relationship of C. jejuni and Acanthamoebae spp. where Acanthamoebae are a transient host for this pathogen. Mutations to the flagella components were shown to affect C. jejuni-A. castellanii interactions. Here, we show that the motility function of flagella is not a prerequisite for C. jejuni-A. castellanii interactions and that specific O-linked glycan modifications of the C. jejuni major flagellin, FlaA, are important for the recognition, interaction and phagocytosis by A. castellanii. Substitution of the O-linked glycosylated serine 415 and threonine 477 with alanine within FlaA abolished C. jejuni interactions with A. castellanii and these mutants were indistinguishable from a ΔflaA mutant. By contrast, mutation to serine 405 did not affect C. jejuni 11168H and A. castellanii interactions. Given the abundance of flagella glycosylation among clinically important pathogens, our observations may have a wider implication for understanding host-pathogen interactions.
Asunto(s)
Acanthamoeba castellanii , Campylobacter jejuni , Humanos , Animales , Campylobacter jejuni/genética , Flagelina/genética , Alanina , Polisacáridos , MamíferosRESUMEN
Conjugate vaccines produced either by chemical or biologically conjugation have been demonstrated to be safe and efficacious in protection against several deadly bacterial diseases. However, conjugate vaccine assembly and production have several shortcomings which hinders their wider availability. Here, we developed a tool, Mobile-element Assisted Glycoconjugation by Insertion on Chromosome, MAGIC, a novel biotechnological platform that overcomes the limitations of the current conjugate vaccine design method(s). As a model, we focused our design on a leading bioconjugation method using N-oligosaccharyltransferase (OTase), PglB. The installation of MAGIC led to at least twofold increase in glycoconjugate yield via MAGIC when compared to conventional N-OTase based bioconjugation method(s). Then, we improved MAGIC to (a) allow rapid installation of glycoengineering component(s), (b) omit the usage of antibiotics, (c) reduce the dependence on protein induction agents. Furthermore, we show the modularity of the MAGIC platform in performing glycoengineering in bacterial species that are less genetically tractable than the commonly used Escherichia coli. The MAGIC system promises a rapid, robust and versatile method to develop vaccines against serious bacterial pathogens. We anticipate the utility of the MAGIC platform could enhance vaccines production due to its compatibility with virtually any bioconjugation method, thus expanding vaccine biopreparedness toolbox.
Asunto(s)
Antibacterianos , Biotecnología , Vacunas Conjugadas , Escherichia coli/genética , Desarrollo de VacunasRESUMEN
The paralogues RrpA and RrpB, which are members of the MarR family of DNA binding proteins, are important for the survival of the global bacterial foodborne pathogen Campylobacter jejuni under redox stress. We report that RrpA is a positive regulator of mdaB, encoding a flavin-dependent quinone reductase that contributes to the protection from redox stress mediated by structurally diverse quinones, while RrpB negatively regulates the expression of cj1555c (renamed nfrA for NADPH-flavin reductase A), encoding a flavin reductase. NfrA reduces riboflavin at a greater rate than its derivatives, suggesting that exogenous free flavins are the natural substrate. MdaB and NfrA both prefer NADPH as an electron donor. Cysteine substitution and posttranslational modification analyses indicated that RrpA and RrpB employ a cysteine-based redox switch. Complete genome sequence analyses revealed that mdaB is frequently found in Campylobacter and related Helicobacter spp., while nfrA is predominant in C. jejuni strains. Quinones and flavins are redox cycling agents secreted by a wide range of cell types that can form damaging superoxide by one-electron reactions. We propose a model for stress adaptation where MdaB and NfrA facilitate a two-electron reduction mechanism to the less toxic hydroquinones, thus aiding survival and persistence of this major pathogen. IMPORTANCE Changes in cellular redox potential result in alteration in the oxidation state of intracellular metabolites and enzymes; consequently, cells make adjustments that favor growth and survival. The work we present here answers some of the many questions that have remained elusive over the years of investigation into the enigmatic microaerophile bacterium Campylobacter jejuni. We employed molecular approaches to understand the regulation mechanisms and functional analyses to reveal the roles of two novel quinone and flavin reductases; both serve as major pools of cellular redox-active molecules. This work extends our knowledge on bacterial redox sensing mechanisms and the significance of hemostasis.
Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Helicobacter pylori/enzimología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Flavinas/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Oxidorreductasas/genética , Quinonas/metabolismoRESUMEN
The ubiquitous unicellular eukaryote, Acanthamoeba, is known to play a role in the survival and dissemination of Campylobacter jejuni. C. jejuni is the leading cause of bacterial foodborne gastroenteritis world-wide and is a major public health problem. The ability of C. jejuni to interact and potentially invade epithelial cells is thought to be key for disease development in humans. We examined C. jejuni grown under standard laboratory conditions, 11168HCBA with that harvested from within Acanthamoeba castellanii (11168HAC/CBA) or Acanthamoeba polyphaga (11168HAP/CBA), and compared their ability to invade different cell lines. C. jejuni harvested from within amoebae had a ~3.7-fold increase in invasiveness into T84 human epithelial cells and a striking ~11-fold increase for re-entry into A. castellanii cells. We also investigated the invasiveness and survivability of six diverse representative C. jejuni strains within Acanthamoeba spp., our results confirm that invasion and survivability is likely host-cell-dependent. Our survival assay data led us to conclude that Acanthamoeba spp. are a transient host for C. jejuni and that survival within amoebae pre-adapts C. jejuni and enhances subsequent cell invasion. This study provides new insight into C. jejuni interactions with amoebae and its increased invasiveness potential in mammalian hosts.
Asunto(s)
Acanthamoeba castellanii , Amoeba , Infecciones por Campylobacter , Campylobacter jejuni , Acanthamoeba castellanii/microbiología , Animales , Campylobacter jejuni/genética , Eucariontes , Humanos , MamíferosRESUMEN
BACKGROUND: Glycoengineering, in the biotechnology workhorse bacterium, Escherichia coli, is a rapidly evolving field, particularly for the production of glycoconjugate vaccine candidates (bioconjugation). Efficient production of glycoconjugates requires the coordinated expression within the bacterial cell of three components: a carrier protein, a glycan antigen and a coupling enzyme, in a timely fashion. Thus, the choice of a suitable E. coli host cell is of paramount importance. Microbial chassis engineering has long been used to improve yields of chemicals and biopolymers, but its application to vaccine production is sparse. RESULTS: In this study we have engineered a family of 11 E. coli strains by the removal and/or addition of components rationally selected for enhanced expression of Streptococcus pneumoniae capsular polysaccharides with the scope of increasing yield of pneumococcal conjugate vaccines. Importantly, all strains express a detoxified version of endotoxin, a concerning contaminant of therapeutics produced in bacterial cells. The genomic background of each strain was altered using CRISPR in an iterative fashion to generate strains without antibiotic markers or scar sequences. CONCLUSIONS: Amongst the 11 modified strains generated in this study, E. coli Falcon, Peregrine and Sparrowhawk all showed increased production of S. pneumoniae serotype 4 capsule. Eagle (a strain without enterobacterial common antigen, containing a GalNAc epimerase and PglB expressed from the chromosome) and Sparrowhawk (a strain without enterobacterial common antigen, O-antigen ligase and chain length determinant, containing a GalNAc epimerase and chain length regulators from Streptococcus pneumoniae) respectively produced an AcrA-SP4 conjugate with 4 × and 14 × more glycan than that produced in the base strain, W3110. Beyond their application to the production of pneumococcal vaccine candidates, the bank of 11 new strains will be an invaluable resource for the glycoengineering community.
Asunto(s)
Escherichia coli , Glicoconjugados , Vacunas Bacterianas/genética , Escherichia coli/metabolismo , Glicoconjugados/metabolismo , Polisacáridos/metabolismo , Polisacáridos Bacterianos/metabolismo , Racemasas y Epimerasas/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Vacunas ConjugadasRESUMEN
BACKGROUND: Campylobacter is an animal and zoonotic pathogen of global importance, and a pressing need exists for effective vaccines, including those that make use of conserved polysaccharide antigens. To this end, we adapted Protein Glycan Coupling Technology (PGCT) to develop a versatile Escherichia coli strain capable of generating multiple glycoconjugate vaccine candidates against Campylobacter jejuni. RESULTS: We generated a glycoengineering E. coli strain containing the conserved C. jejuni heptasaccharide coding region integrated in its chromosome as a model glycan. This methodology confers three advantages: (i) reduction of plasmids and antibiotic markers used for PGCT, (ii) swift generation of many glycan-protein combinations and consequent rapid identification of the most antigenic proteins or peptides, and (iii) increased genetic stability of the polysaccharide coding-region. In this study, by using the model glycan expressing strain, we were able to test proteins from C. jejuni, Pseudomonas aeruginosa (both Gram-negative), and Clostridium perfringens (Gram-positive) as acceptors. Using this pgl integrant E. coli strain, four glycoconjugates were readily generated. Two glycoconjugates, where both protein and glycan are from C. jejuni (double-hit vaccines), and two glycoconjugates, where the glycan antigen is conjugated to a detoxified toxin from a different pathogen (single-hit vaccines). Because the downstream application of Live Attenuated Vaccine Strains (LAVS) against C. jejuni is to be used in poultry, which have a higher body temperature of 42 °C, we investigated the effect of temperature on protein expression and glycosylation in the E. coli pgl integrant strain. CONCLUSIONS: We determined that glycosylation is temperature dependent and that for the combination of heptasaccharide and carriers used in this study, the level of PglB available for glycosylation is a step limiting factor in the glycosylation reaction. We also demonstrated that temperature affects the ability of PglB to glycosylate its substrates in an in vitro glycosylation assay independent of its transcriptional level.
Asunto(s)
Proteínas Bacterianas/metabolismo , Cromosomas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Glicoconjugados/metabolismo , Temperatura , Proteínas Bacterianas/genética , Vacunas Bacterianas , Campylobacter jejuni/genética , Campylobacter jejuni/inmunología , Glicosilación , Proteínas de la Membrana/genética , Ingeniería Metabólica/métodos , Polisacáridos Bacterianos/genéticaRESUMEN
Protein Glycan Coupling Technology (PGCT) uses purposely modified bacterial cells to produce recombinant glycoconjugate vaccines. This vaccine platform holds great potential in this context, namely due to its modular nature, the simplified production process in comparison to traditional chemical conjugation methods, and its amenability to scaled-up operations. As a result, a considerable reduction in production time and cost is expected, making PGCT-made vaccines a suitable vaccine technology for low-middle income countries, where vaccine coverage remains predominantly low and inconsistent. This work aims to develop an integrated whole-process automated platform for the screening of PGCT-made glycoconjugate vaccine candidates. The successful translation of a bench scale process for glycoconjugate production to a microscale automated setting was achieved. This was integrated with a numerical computational software that allowed hands-free operation and a platform adaptable to biological variation over the course of a production process. Platform robustness was proven with both technical and biological replicates and subsequently the platform was used to screen for the most favourable conditions for production of a pneumococcal serotype 4 vaccine candidate. This work establishes an effective automated platform that enabled the identification of the most suitable E. coli strain and genetic constructs to be used in ongoing early phase research and be further brought into preclinical trials.
Asunto(s)
ADP Ribosa Transferasas/metabolismo , Automatización/métodos , Toxinas Bacterianas/metabolismo , Biotecnología/métodos , Escherichia coli/metabolismo , Exotoxinas/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Polisacáridos Bacterianos/metabolismo , Vacunas Conjugadas/biosíntesis , Factores de Virulencia/metabolismo , Vacunas Bacterianas/biosíntesis , Glicosilación , Humanos , Vacunas Neumococicas/biosíntesis , Tecnología Farmacéutica/métodos , Exotoxina A de Pseudomonas aeruginosaRESUMEN
BACKGROUND: Poultry is the world's most popular animal-based food and global production has tripled in the past 20 years alone. Low-cost vaccines that can be combined to protect poultry against multiple infections are a current global imperative. Glycoconjugate vaccines, which consist of an immunogenic protein covalently coupled to glycan antigens of the targeted pathogen, have a proven track record in human vaccinology, but have yet to be used for livestock due to prohibitively high manufacturing costs. To overcome this, we use Protein Glycan Coupling Technology (PGCT), which enables the production of glycoconjugates in bacterial cells at considerably reduced costs, to generate a candidate glycan-based live vaccine intended to simultaneously protect against Campylobacter jejuni, avian pathogenic Escherichia coli (APEC) and Clostridium perfringens. Campylobacter is the most common cause of food poisoning, whereas colibacillosis and necrotic enteritis are widespread and devastating infectious diseases in poultry. RESULTS: We demonstrate the functional transfer of C. jejuni protein glycosylation (pgl) locus into the genome of APEC χ7122 serotype O78:H9. The integration caused mild attenuation of the χ7122 strain following oral inoculation of chickens without impairing its ability to colonise the respiratory tract. We exploit the χ7122 pgl integrant as bacterial vectors delivering a glycoprotein decorated with the C. jejuni heptasaccharide glycan antigen. To this end we engineered χ7122 pgl to express glycosylated NetB toxoid from C. perfringens and tested its ability to reduce caecal colonisation of chickens by C. jejuni and protect against intra-air sac challenge with the homologous APEC strain. CONCLUSIONS: We generated a candidate glycan-based multivalent live vaccine with the potential to induce protection against key avian and zoonotic pathogens (C. jejuni, APEC, C. perfringens). The live vaccine failed to significantly reduce Campylobacter colonisation under the conditions tested but was protective against homologous APEC challenge. Nevertheless, we present a strategy towards the production of low-cost "live-attenuated multivalent vaccine factories" with the ability to express glycoconjugates in poultry.
Asunto(s)
Infecciones por Campylobacter/prevención & control , Infecciones por Clostridium/prevención & control , Infecciones por Escherichia coli/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Desarrollo de Vacunas/métodos , Animales , Campylobacter jejuni/inmunología , Pollos , Clostridium perfringens/inmunología , Escherichia coli/inmunología , Vacunas Atenuadas/inmunología , Vacunas Combinadas/inmunologíaRESUMEN
In Escherichia coli, citrate-mediated iron transport is a key nonheme pathway for the acquisition of iron. Binding of ferric citrate to the outer membrane protein FecA induces a signal cascade that ultimately activates the cytoplasmic sigma factor FecI, resulting in transcription of the fecABCDE ferric citrate transport genes. Central to this process is signal transduction mediated by the inner membrane protein FecR. FecR spans the inner membrane through a single transmembrane helix, which is flanked by cytoplasm- and periplasm-orientated moieties at the N and C termini. The transmembrane helix of FecR resembles a twin-arginine signal sequence, and the substitution of the paired arginine residues of the consensus motif decouples the FecR-FecI signal cascade, rendering the cells unable to activate transcription of the fec operon when grown on ferric citrate. Furthermore, the fusion of beta-lactamase C-terminal to the FecR transmembrane helix results in translocation of the C-terminal domain that is dependent on the twin-arginine translocation (Tat) system. Our findings demonstrate that FecR belongs to a select group of bitopic inner membrane proteins that contain an internal twin-arginine signal sequence.IMPORTANCE Iron is essential for nearly all living organisms due to its role in metabolic processes and as a cofactor for many enzymes. The FecRI signal transduction pathway regulates citrate-mediated iron import in many Gram-negative bacteria, including Escherichia coli The interactions of FecR with the outer membrane protein FecA and cytoplasmic anti-sigma factor FecI have been extensively studied. However, the mechanism by which FecR inserts into the membrane has not previously been reported. In this study, we demonstrate that the targeting of FecR to the cytoplasmic membrane is dependent on the Tat system. As such, FecR represents a new class of bitopic Tat-dependent membrane proteins with an internal twin-arginine signal sequence.
Asunto(s)
Sistemas de Secreción Bacterianos/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Compuestos Férricos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factor sigma/metabolismo , Sistemas de Secreción Bacterianos/genética , Membrana Celular/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Factor sigma/genéticaRESUMEN
Clostridioides difficile is an etiological agent for antibiotic-associated diarrheal disease. C. difficile produces a phenolic compound, para-cresol, which selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. C. difficile decarboxylates para-hydroxyphenylacetate (p-HPA) to produce p-cresol by the action of the HpdBCA decarboxylase encoded by the hpdBCA operon. Here, we investigate regulation of the hpdBCA operon and directly compare three independent reporter systems; SNAP-tag, glucuronidase gusA, and alkaline phosphatase phoZ reporters to detect basal and inducible expression. We show that expression of hpdBCA is upregulated in response to elevated p-HPA. In silico analysis identified three putative promoters upstream of hpdBCA operon-P1, P2, and Pσ54; only the P1 promoter was responsible for both basal and p-HPA-inducible expression of hpdBCA We demonstrated that turnover of tyrosine, a precursor for p-HPA, is insufficient to induce expression of the hpdBCA operon above basal levels because it is inefficiently converted to p-HPA in minimal media. We show that induction of the hpdBCA operon in response to p-HPA occurs in a dose-dependent manner. We also identified an inverted palindromic repeat (AAAAAG-N13-CTTTTT) upstream of the hpdBCA start codon (ATG) that is essential for inducing transcription of the hpdBCA operon in response to p-HPA, which drives the production of p-cresol. This provides insights into the regulatory control of p-cresol production, which affords a competitive advantage for C. difficile over other intestinal bacteria, promoting dysbiosis.IMPORTANCEClostridioides difficile infection results from antibiotic-associated dysbiosis. para-Cresol, a phenolic compound produced by C. difficile, selectively targets gammaproteobacteria in the gut, facilitating dysbiosis. Here, we demonstrate that expression of the hpdBCA operon, encoding the HpdBCA decarboxylase which converts p-HPA to p-cresol, is upregulated in response to elevated exogenous p-HPA, with induction occurring between >0.1 and ≤0.25 mg/ml. We determined a single promoter and an inverted palindromic repeat responsible for basal and p-HPA-inducible hpdBCA expression. We identified turnover of tyrosine, a p-HPA precursor, does not induce hpdBCA expression above basal level, indicating that exogenous p-HPA was required for p-cresol production. Identifying regulatory controls of p-cresol production will provide novel therapeutic targets to prevent p-cresol production, reducing C. difficile's competitive advantage.
Asunto(s)
Proteínas Bacterianas/metabolismo , Carboxiliasas/metabolismo , Clostridioides difficile/metabolismo , Cresoles/metabolismo , Fenilacetatos/metabolismo , Regulación Bacteriana de la Expresión Génica , Operón , Regiones Promotoras GenéticasRESUMEN
Glaesserella (Haemophilus) parasuis is a commensal bacterium of the upper respiratory tract in pigs and also the causative agent of Glässer's disease, which causes significant morbidity and mortality in pigs worldwide. Isolates are characterized into 15 serovars by their capsular polysaccharide, which has shown a correlation with isolate pathogenicity. To investigate the role the capsule plays in G. parasuis virulence and host interaction, a capsule mutant of the serovar 5 strain HS069 was generated (HS069Δcap) through allelic exchange following natural transformation. HS069Δcap was unable to cause signs of systemic disease during a pig challenge study and had increased sensitivity to complement killing and phagocytosis by alveolar macrophages. Compared with the parent strain, HS069Δcap produced more robust biofilm and adhered equivalently to 3D4/31 cells; however, it was unable to persistently colonize the nasal cavity of inoculated pigs, with all pigs clearing HS069Δcap by 5 days postchallenge. Our results indicate the importance of the capsular polysaccharide to G. parasuis virulence as well as nasal colonization in pigs.
Asunto(s)
Haemophilus parasuis/genética , Animales , Biopelículas , Infecciones por Haemophilus/microbiología , Macrófagos Alveolares/microbiología , Fagocitosis/fisiología , Porcinos , Enfermedades de los Porcinos/microbiología , Virulencia/genéticaRESUMEN
Campylobacter jejuni is considered to be the most common bacterial cause of human gastroenteritis worldwide. C. jejuni can cause bloody diarrhoea, fever and abdominal pain in humans along with post-infectious sequelae such as Guillain-Barré syndrome (a paralytic autoimmune complication). C. jejuni infections can be fatal, particularly among young children. C. jejuni are distributed in most warm-blooded animals, and therefore the main route of transmission is generally foodborne, via the consumption and handling of meat products (particularly poultry). C. jejuni is microaerophilic and oxygen-sensitive, although it appears to be omnipresent in the environment, one of the many contradictions of Campylobacter.
Asunto(s)
Infecciones por Campylobacter/microbiología , Campylobacter jejuni/fisiología , Animales , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/transmisión , Campylobacter jejuni/clasificación , Campylobacter jejuni/patogenicidad , Microbiología Ambiental , Gastroenteritis/epidemiología , Gastroenteritis/microbiología , Genoma Bacteriano , Humanos , Viabilidad Microbiana , Filogenia , Aves de Corral/microbiologíaRESUMEN
Clostridium difficile is a Gram-positive spore-forming anaerobe and a major cause of antibiotic-associated diarrhoea. Disruption of the commensal microbiota, such as through treatment with broad-spectrum antibiotics, is a critical precursor for colonisation by C. difficile and subsequent disease. Furthermore, failure of the gut microbiota to recover colonisation resistance can result in recurrence of infection. An unusual characteristic of C. difficile among gut bacteria is its ability to produce the bacteriostatic compound para-cresol (p-cresol) through fermentation of tyrosine. Here, we demonstrate that the ability of C. difficile to produce p-cresol in vitro provides a competitive advantage over gut bacteria including Escherichia coli, Klebsiella oxytoca and Bacteroides thetaiotaomicron. Metabolic profiling of competitive co-cultures revealed that acetate, alanine, butyrate, isobutyrate, p-cresol and p-hydroxyphenylacetate were the main metabolites responsible for differentiating the parent strain C. difficile (630Δerm) from a defined mutant deficient in p-cresol production. Moreover, we show that the p-cresol mutant displays a fitness defect in a mouse relapse model of C. difficile infection (CDI). Analysis of the microbiome from this mouse model of CDI demonstrates that colonisation by the p-cresol mutant results in a distinctly altered intestinal microbiota, and metabolic profile, with a greater representation of Gammaproteobacteria, including the Pseudomonales and Enterobacteriales. We demonstrate that Gammaproteobacteria are susceptible to exogenous p-cresol in vitro and that there is a clear divide between bacterial Phyla and their susceptibility to p-cresol. In general, Gram-negative species were relatively sensitive to p-cresol, whereas Gram-positive species were more tolerant. This study demonstrates that production of p-cresol by C. difficile has an effect on the viability of intestinal bacteria as well as the major metabolites produced in vitro. These observations are upheld in a mouse model of CDI, in which p-cresol production affects the biodiversity of gut microbiota and faecal metabolite profiles, suggesting that p-cresol production contributes to C. difficile survival and pathogenesis.
Asunto(s)
Clostridioides difficile/metabolismo , Infecciones por Clostridium/microbiología , Cresoles/metabolismo , Microbioma Gastrointestinal/fisiología , Bacterias Gramnegativas/fisiología , Animales , Antibacterianos/efectos adversos , Biodiversidad , Membrana Celular/efectos de los fármacos , Clostridioides difficile/genética , Clostridioides difficile/patogenicidad , Cresoles/farmacología , Modelos Animales de Enfermedad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Metaboloma , Ratones , Ratones Endogámicos C57BL , MutaciónRESUMEN
Streptococcus pneumoniae capsular serotype 1 continues to pose a huge infectious disease burden in low- and middle-income countries, particularly in West Africa. However, studies on this important serotype have been hampered by the inability to genetically modify these strains. In this study we have genetically modified a serotype 1 strain (519/43), the first time that this has been achieved for this serotype, providing the methodology for a deeper understanding of its biology and pathogenicity. As proof of principle we constructed a defined pneumolysin mutant and showed that it lost its ability to lyse red blood cells. We also showed that when mice were infected intranasally with the mutant 519/43Δply there was no significant difference between the load of bacteria in lungs and blood when compared to the wild type 519/43. When mice were infected intraperitoneally there were significantly fewer bacteria recovered from blood for the mutant 519/43Δply strain, although all mice still displayed signs of disease. Our study demonstrates S. pneumoniae serotype 1 strains can be genetically manipulated using our methodology and demonstrate that the ability to cause pneumonia in mice is independent of active pneumolysin for the 519/43 serotype 1 strain.
Asunto(s)
Streptococcus pneumoniae , Estreptolisinas/genética , Animales , Proteínas Bacterianas/genética , Sangre/microbiología , Técnicas de Inactivación de Genes , Hemólisis , Pulmón/microbiología , Ratones , Mutagénesis , Mutación , Infecciones Neumocócicas/microbiología , Serogrupo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/aislamiento & purificación , Streptococcus pneumoniae/patogenicidad , Virulencia/genéticaRESUMEN
BACKGROUND: Glaesserella parasuis, the causative agent of GlÓsser's disease, is widespread in swine globally resulting in significant economic losses to the swine industry. Prevention of GlÓsser's disease in pigs has been plagued with an inability to design broadly protective vaccines, as many bacterin based platforms generate serovar or strain specific immunity. Subunit vaccines are of interest to provide protective immunity to multiple strains of G. parasuis. Selected proteins for subunit vaccination should be widespread, highly conserved, and surface exposed. RESULTS: Two candidate proteins for subunit vaccination (RlpB and VacJ) against G. parasuis were identified using random mutagenesis and an in vitro organ culture system. Pigs were vaccinated with recombinant RlpB and VacJ, outer membrane proteins with important contributions to cellular function and viability. Though high antibody titers to the recombinant proteins and increased interferon-γ producing cells were found in subunit vaccinated animals, the pigs were not protected from developing systemic disease. CONCLUSIONS: It appears there may be insufficient RlpB and VacJ exposed on the bacterial surface for antibody to bind, preventing high RlpB and VacJ specific antibody titers from protecting animals from G. parasuis. Additionally, this work confirms the importance of utilizing the natural host species when assessing the efficacy of vaccine candidates.
Asunto(s)
Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/inmunología , Proteínas Recombinantes/inmunología , Enfermedades de los Porcinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Proteínas Bacterianas/inmunología , Vacunas Bacterianas/inmunología , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/prevención & control , Vacunas contra Haemophilus/inmunología , Haemophilus parasuis/genética , Serogrupo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/microbiología , Técnicas de Cultivo de Tejidos/veterinaria , Vacunación/veterinaria , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunologíaRESUMEN
The porcine pathogen Streptococcus suis colonizes the upper respiratory tracts of pigs, potentially causing septicaemia, meningitis and death, thus placing a severe burden on the agricultural industry worldwide. It is also a zoonotic pathogen that is known to cause systemic infections and meningitis in humans. Understanding how S. suis colonizes and interacts with its hosts is relevant for future strategies of drug and vaccine development. As with other Gram-positive bacteria, S. suis utilizes enzymes known as sortases to attach specific proteins bearing cell wall sorting signals to its surface, where they can play a role in host-pathogen interactions. The surface proteins of bacteria are often important in adhesion to and invasion of host cells. In this study, markerless in-frame deletion mutants of the housekeeping sortase srtA and the two pilus-associated sortases, srtB and srtF, were generated and their importance in S. suis infections was investigated. We found that all three of these sortases are essential to disease in pigs, concluding that their cognate-sorted proteins may also be useful in protecting pigs against infection.
Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Aminoaciltransferasas/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Pared Celular/metabolismo , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Mariposas Nocturnas , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Eliminación de Secuencia , Infecciones Estreptocócicas/microbiología , Infecciones Estreptocócicas/patología , Streptococcus suis/genética , Streptococcus suis/crecimiento & desarrollo , Streptococcus suis/inmunología , Porcinos , Enfermedades de los Porcinos/patología , Virulencia/genéticaRESUMEN
Streptococcus suis is one of the most important zoonotic bacterial pathogens of pigs, causing significant economic losses to the global swine industry. S. suis is also a very successful colonizer of mucosal surfaces, and commensal strains can be found in almost all pig populations worldwide, making detection of the S. suis species in asymptomatic carrier herds of little practical value in predicting the likelihood of future clinical relevance. The value of future molecular tools for surveillance and preventative health management lies in the detection of strains that genetically have increased potential to cause disease in presently healthy animals. Here we describe the use of genome-wide association studies to identify genetic markers associated with the observed clinical phenotypes (i) invasive disease and (ii) asymptomatic carriage on the palatine tonsils of pigs on UK farms. Subsequently, we designed a multiplex PCR to target three genetic markers that differentiated 115 S. suis isolates into disease-associated and non-disease-associated groups, that performed with a sensitivity of 0.91, a specificity of 0.79, a negative predictive value of 0.91, and a positive predictive value of 0.79 in comparison to observed clinical phenotypes. We describe evaluation of our pathotyping tool, using an out-of-sample collection of 50 previously uncharacterized S. suis isolates, in comparison to existing methods used to characterize and subtype S. suis isolates. In doing so, we show our pathotyping approach to be a competitive method to characterize S. suis isolates recovered from pigs on UK farms and one that can easily be updated to incorporate global strain collections.
Asunto(s)
Portador Sano/veterinaria , Infecciones Estreptocócicas/veterinaria , Streptococcus suis/aislamiento & purificación , Streptococcus suis/patogenicidad , Enfermedades de los Porcinos/microbiología , Animales , Portador Sano/microbiología , Inglaterra , Marcadores Genéticos/genética , Genoma Bacteriano/genética , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa Multiplex , Tonsila Palatina/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Porcinos , Virulencia/genética , GalesRESUMEN
Vibrio cholerae O1 infections mainly are responsible for significant mortality and morbidity amongst children, however, non-O1/non-O139 V. cholerae have also been reported to cause mild to severe infections because of their virulence potential. The pathogenic mechanisms of non-O1, non-O139 isolates are not as clearly understood as for that of O1 and O139 isolates. Type three secretion system (TTSS) is also considered one of the important virulent factors and during the current study, we investigated the role of TTSS in association with non-O1/non-O139 clinical isolates. We report that the presence of TTSS in non-O1/non-O139 V. cholerae clinical isolate (D13) from a child confers more virulence compared to the one lacking it (D15) in another clinical case during the small cholera epidemic. Moreover, the antibiotic susceptibility profiles of D13 and D15 indicate that they are multiple drug resistance (MDR) isolates. The sequence analysis for TTSS cluster was carried out for D13 and compared with the TTSS positive reference Vibrio parahaemolyticus RIMD2210633 and V. cholerae AM19226 non-O1/non-O139. Furthermore, the pathogenic potential of D13 & D15 was also explored in simple and economical invertebrate host model, Galleria mellonella and the results revealed that TTSS+ve isolate (D13) was more virulent compared to TTSS-ve isolate (D15). We suggest that this distinct genetic difference, seen in natural variants D13 and D15, is also reflected by the clinical picture of the former in contributing towards the severity of disease symptoms and this finding was further validated by assessing virulence potential of both isolates using inexpensive G. mellonella infection model.