RESUMEN
BACKGROUND: Physical inactivity in people with chronic stroke profoundly affects daily function and increases recurrent stroke risk and mortality, making physical activity improvements an important target of intervention. We compared the effects of a high-intensity walking intervention (FAST), a step activity monitoring behavioral intervention (SAM), or a combined intervention (FAST+SAM) on physical activity (ie, steps/day). We hypothesized the combined intervention would yield the greatest increase in steps/day. METHODS: This assessor-blinded multisite randomized controlled trial was conducted at 4 university/hospital-based laboratories. Participants were 21 to 85 years old, walking without physical assistance following a single, unilateral noncerebellar stroke of ≥6 months duration, and randomly assigned to FAST, SAM, or FAST+SAM for 12 weeks (2-3 sessions/week). FAST training consisted of walking-related activities at 70% to 80% heart rate reserve, while SAM received daily feedback and goal setting of walking activity (steps/day). Assessors and study statistician were masked to group assignment. The a priori-determined primary outcome and end point was a comparison of the change in steps/day between the 3 intervention groups from pre- to post-intervention. Adverse events were tracked after randomization. All randomized participants were included in the intent-to-treat analysis. RESULTS: Participants were enrolled from July 18, 2016, to November 16, 2021. Of 2385 participants initially screened, 250 participants were randomized (mean [SE] age, 63 [0.80] years; 116 females/134 males), with 89 assigned to FAST, 81 to SAM, and 80 to FAST+SAM. Steps/day significantly increased in both the SAM (mean [SE], 1542 [267; 95% CI, 1014-2069] P<0.001) and FAST+SAM group (1307 [280; 95% CI, 752-1861] P<0.001) but not in the FAST group (406 [238; 95% CI, -63 to 876] P=0.09). There were no deaths or serious study-related adverse events. CONCLUSIONS: Only individuals with chronic stroke who completed a step activity monitoring behavioral intervention with skilled coaching and goal progression demonstrated improvements in physical activity (steps/day). REGISTRATION: URL: https://www.clinicaltrials.gov; Unique identifier: NCT02835313.
Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Masculino , Femenino , Humanos , Persona de Mediana Edad , Adulto Joven , Adulto , Anciano , Anciano de 80 o más Años , Caminata/fisiología , Ejercicio Físico , Accidente Cerebrovascular/terapia , Terapia por EjercicioRESUMEN
BACKGROUND AND PURPOSE: The transtheoretical model is a health behavior model used to understand an individual's readiness to change their behavior. This study aims to apply the transtheoretical model in understanding a person with stroke's readiness to change their activity level, as it relates to physical capacity, physical health, depressive symptoms, self-efficacy, and daily stepping activity. METHODS: This was a cross-sectional analysis of baseline data from a clinical trial. Participants' readiness to change their activity levels was measured via self-report and daily stepping activity was measured using a step activity monitor. Robust regression (M-estimation with robust standard errors) was used to test the relationship between readiness to change and measures of physical capacity (6-minute walk test, self-selected walking speed), physical health (body mass index, age-adjusted Charlson Comorbidity Index), depressive symptoms (Patient Health Questionnaire-9), self-efficacy (Activities-Specific Balance Confidence Scale), and daily stepping (steps per day). RESULTS: A total of 274 individuals were included in the analysis. Adjusted for age, readiness to change was positively related to daily stepping (ß = 0.29, P < 0.001) and negatively related to depressive symptoms (ß = -0.13, P = 0.01). Readiness to change was not significantly associated with measures of physical capacity, physical health, or self-efficacy. DISCUSSION: These results suggest that individuals with stroke in the later stages of change may demonstrate greater daily stepping activity and lower depressive symptoms compared with those in earlier stages. CONCLUSIONS: Understanding the relationship between readiness to change, daily stepping, and depressive symptoms will help clinicians implement appropriate stage-specific intervention strategies and facilitate greater improvement in activity levels.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A333).
Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estudios Transversales , Depresión , Humanos , CaminataRESUMEN
OBJECTIVE: To identify homogeneous subsets of survivors of chronic stroke who share similar characteristics across several domains and test if these groups differ in real-world walking activity. We hypothesized that variables representing the domains of walking ability, psychosocial, environment, and cognition would be important contributors in differentiating real-world walking activity in survivors of chronic stroke. DESIGN: Cross-sectional, secondary data analysis. SETTING: University/laboratory. PARTICIPANTS: A total of 283 individuals with chronic (≥6mo) stroke (N=238). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Thirteen variables representing 5 domains were included: (1) walking ability: 6-minute walk test (6MWT), self-selected speed (SSS) of gait; (2) psychosocial: Patient Health Questionnaire-9, Activities-specific Balance Confidence (ABC) scale; (3) physical health: low-density lipoprotein cholesterol, body mass index, Charlson Comorbidity Index (CCI); (4) cognition: Montreal Cognitive Assessment (MoCA); and (5) environment: living situation and marital status, work status, Area Deprivation Index (ADI), Walk Score. Mixture modeling was used to identify latent classes of survivors of stroke. After identifying the latent classes, walking activity, measured as steps per day (SPD), was included as a distal outcome to understand if classes were meaningfully different in their real-world walking RESULTS: A model with 3 latent classes was selected. The 6MWT, SSS, ABC scale, and Walk Score were significantly different among all 3 classes. Differences were also seen for the MoCA, ADI, and CCI between 2 of the 3 classes. Importantly, the distal outcome of SPD was significantly different in all classes, indicating that real-world walking activity differs among the groups identified by the mixture model. CONCLUSIONS: Survivors of stroke with lower walking ability, lower self-efficacy, lower cognitive abilities, and greater area deprivation had lower SPD. These results demonstrate that the physical and social environment (including socioeconomic factors) and cognitive function should also be considered when developing interventions to improve real-world walking activity after stroke.
Asunto(s)
Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/psicología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/psicología , Caminata/fisiología , Caminata/psicología , Acelerometría , Adulto , Anciano , Anciano de 80 o más Años , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Sobrevivientes , Prueba de PasoRESUMEN
BACKGROUND: Exercise has failed to reduce falls in those with chronic stroke. A limitation of traditional exercise is that the motor responses needed to prevent a fall are not elicited (i.e. they lack processing specificity). Balance reactions often require compensatory steps. Therefore, interventions that target such steps have the potential to reduce falls. Computerized treadmills can deliver precise, repeatable, and challenging perturbations as part of a training protocol. The objective of this study was to develop and determine the feasibility of such training applied to those with chronic stroke. We developed the training to address specificity, appropriate duration and repetition, and progressive overloading and individualization. We hypothesized that our intervention would be acceptable, practical, safe, and demonstrate initial signs of efficacy. METHODS: In this single-arm study, thirteen individuals with chronic stroke (29-77 years old, 2-15 years post stroke) performed up to six training sessions using a computer-controlled treadmill. Each session had separate progressions focused on initial steps with the non-paretic or paretic limbs in response to anterior or posterior falls. Perturbation magnitudes were altered based on performance and tolerance. Acceptability was determined by adherence, or the number of sessions completed. Practicality was documented by the equipment, space, time, and personnel. Adverse events were documented to reflect safety. In order to determine the potential-efficacy of this training, we compared the proportion of successful recoveries and the highest perturbation magnitude achieved on the first and last sessions. RESULTS: The training was acceptable, as evident by 12/13 participants completing all 6 sessions. The protocol was practical, requiring one administrator, the treadmill, and a harness. The protocol was safe, as evident by no serious or unanticipated adverse events. The protocol demonstrated promising signs of efficacy. From the first to last sessions, participants had a higher proportion of successful recoveries and progressed to larger disturbances. CONCLUSIONS: Using a computerized treadmill, we developed an approach to fall-recovery training in individuals with chronic stroke that was specific, considered duration and repetition, and incorporated progressive overloading and individualization. We demonstrated that this training was acceptable, practical, safe, and potentially beneficial for high-functioning individuals with chronic stroke. TRIAL REGISTRATION: Retrospectively registered at clinicaltrials.gov ( NCT03638089 ) August 20, 2018.
Asunto(s)
Accidentes por Caídas/prevención & control , Terapia por Ejercicio/instrumentación , Terapia por Ejercicio/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Adulto , Anciano , Enfermedad Crónica , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/complicacionesRESUMEN
BACKGROUND: Stroke survivors are more physically inactive than even the most sedentary older adults, and low activity is associated with increased risk of recurrent stroke, medical complications, and mortality. We hypothesize that the combination of a fast walking intervention that improves walking capacity, with a step activity monitoring program that facilitates translation of gains from the clinic to the "real-world", would generate greater improvements in real world walking activity than with either intervention alone. METHODS: Using a single-blind randomized controlled experimental design, 225 chronic (> 6 months) stroke survivors complete 12 weeks of fast walking training, a step activity monitoring program or a fast walking training + step activity monitoring program. Main eligibility criteria include: chronic ischemic or hemorrhagic stroke (> 6 months post), no evidence of cerebellar stroke, baseline walking speed between 0.3 m/s and 1.0 m/s, and baseline average steps / day < 8000. The primary (steps per day), secondary (self-selected and fastest walking speed, walking endurance, oxygen consumption) and exploratory (vascular events, blood lipids, glucose, blood pressure) outcomes are assessed prior to initiating treatment, after the last treatment and at a 6 and 12-month follow-up. Moderation of the changes in outcomes by baseline characteristics are evaluated to determine for whom the interventions are effective. DISCUSSION: Following completion of this study, we will not only understand the efficacy of the interventions and the individuals for which they are effective, we will have the necessary information to design a study investigating the secondary prevention benefits of improved physical activity post-stroke. This study is, therefore, an important step in the development of both rehabilitative and secondary prevention guidelines for persons with stroke. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02835313 . First Posted: July 18, 2016.
Asunto(s)
Terapia por Ejercicio/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Caminata/fisiología , HumanosRESUMEN
BACKGROUND/PURPOSE: Many factors appear to be related to physical activity after stroke, yet it is unclear how these factors interact and which ones might be the best predictors. Therefore, the purpose of this study was twofold: (1) to examine the relationship between walking capacity and walking activity, and (2) to investigate how biopsychosocial factors and self-efficacy relate to walking activity, above and beyond walking capacity impairment poststroke. METHODS: Individuals greater than 3 months poststroke (n = 55) completed the Yesavage Geriatric Depression Scale (GDS), Fatigue Severity Scale (FSS), Modified Cumulative Illness Rating (MCIR) Scale, Walk 12, Activities-Specific Balance Confidence (ABC) Scale, Functional Gait Assessment (FGA), and oxygen consumption testing. Walking activity data were collected via a StepWatch Activity Monitor. Predictors were grouped into 3 constructs: (1) walking capacity: oxygen consumption and FGA; (2) biopsychosocial: GDS, FSS, and MCIR; (3) self-efficacy: Walk 12 and ABC. Moderated sequential regression models were used to examine what factors best predicted walking activity. RESULTS: Walking capacity explained 35.9% (P < 0.001) of the variance in walking activity. Self-efficacy (ΔR = 0.15, P < 0.001) and the interaction between the FGA×ABC (ΔR = 0.047, P < 0.001) significantly increased the variability explained. The FGA (ß = 0.37, P = 0.01), MCIR (ß = -0.26, P = 0.01), and Walk 12 (ß = -0.45, P = 0.00) were each individually significantly associated with walking activity. DISCUSSION AND CONCLUSION: Although measures of walking capacity and self-efficacy significantly contributed to "real-world" walking activity, balance self-efficacy moderated the relationship between walking capacity and walking activity. Improving balance self-efficacy may augment walking capacity and translate to improved walking activity poststroke.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A139).
Asunto(s)
Ejercicio Físico , Accidente Cerebrovascular/complicaciones , Caminata , Anciano , Tolerancia al Ejercicio , Femenino , Humanos , Masculino , Persona de Mediana Edad , Psicología , Autoeficacia , Rehabilitación de Accidente CerebrovascularRESUMEN
BACKGROUND: Walking dysfunctions persist following poststroke rehabilitation. A major limitation of current rehabilitation efforts is the inability to identify modifiable deficits that, when improved, will result in the recovery of walking function. Previous studies have relied on cross-sectional analyses to identify deficits to target during walking rehabilitation; however, these studies did not account for the influence of a key covariate - maximum walking speed. OBJECTIVE: To determine the relationships between commonly studied poststroke variables and the long-distance walking function of individuals poststroke when controlling for maximum walking speed. METHODS: Correlation analyses of cross-sectional data from 57 individuals more than 6 months poststroke measured the relationships between standing balance, walking balance, balance self-efficacy, lower extremity motor function, and maximum walking speed versus long-distance walking function. For a subgroup of subjects who completed training, the relationship between changes in maximum walking speed versus changes in long-distance walking function was assessed. RESULTS: Each measurement of interest strongly correlated with long-distance walking function (rs from 0.448 to 0.900, all Ps ≤ .001); however, when controlling for maximum walking speed, none of the other measurements remained related to long-distance walking function. In contrast, when controlling for each of the other measurements, maximum walking speed remained highly related. Moreover, changes in maximum walking speed resulting from training were highly related to changes in long-distance walking function (r = .737, P ≤ .001). CONCLUSIONS: For individuals in the chronic phase of stroke recovery, improving maximum walking speed may be necessary to improve long-distance walking function.
Asunto(s)
Trastornos Neurológicos de la Marcha/rehabilitación , Marcha/fisiología , Paresia/rehabilitación , Modalidades de Fisioterapia , Rehabilitación de Accidente Cerebrovascular , Estudios Transversales , Femenino , Trastornos Neurológicos de la Marcha/fisiopatología , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Paresia/fisiopatología , Accidente Cerebrovascular/fisiopatología , Factores de Tiempo , Resultado del Tratamiento , Caminata/fisiologíaRESUMEN
We are honored that authors are reading our manuscript [...].
Asunto(s)
Monitoreo Epidemiológico Basado en Aguas Residuales , Aguas Residuales , Georgia , Epidemia de Opioides , Salud Pública , Analgésicos OpioidesRESUMEN
The opioid epidemic has continued to be an ongoing public health crisis within Metro Atlanta for the last three decades. However, estimating opioid use and exposure in a large population is almost impossible, and alternative methods are being explored, including wastewater-based epidemiology. Wastewater contains various contaminants that can be monitored to track pathogens, infectious diseases, viruses, opioids, and more. This commentary is focusing on two issues: use of opioid residue data in wastewater as an alternative method for opioid exposure assessment in the community, and the adoption of a streamlined approach that can be utilized by public health officials. Opioid metabolites travel through the sanitary sewer through urine, fecal matter, and improper disposal of opioids to local wastewater treatment plants. Public health officials and researchers within various entities have utilized numerous approaches to reduce the impacts associated with opioid use. National wastewater monitoring programs and wastewater-based epidemiology are approaches that have been utilized globally by researchers and public health officials to combat the opioid epidemic. Currently, public health officials and policy makers within Metro Atlanta are exploring different solutions to reduce opioid use and opioid-related deaths throughout the community. In this commentary, we are proposing a new innovative approach for monitoring opioid use and analyzing trends by utilizing wastewater-based epidemiologic methods, which may help public health officials worldwide manage the opioid epidemic in a large metro area in the future.
Asunto(s)
Analgésicos Opioides , Trastornos Relacionados con Opioides , Humanos , Analgésicos Opioides/uso terapéutico , Georgia/epidemiología , Aguas Residuales , Epidemia de Opioides , Trastornos Relacionados con Opioides/epidemiología , Trastornos Relacionados con Opioides/tratamiento farmacológicoRESUMEN
BACKGROUND: Sedentary time is an independent construct from active time. Previous studies have examined variables associated with sedentary time to inform behavior change programs; however, these studies have lacked data sets that encompass potentially important domains. OBJECTIVES: The purpose of this study was to build a more comprehensive model containing previously theorized important predictors of sedentary time and new predictors that have not been explored. We hypothesized that variables representing the domains of physical capacity, psychosocial, physical health, cognition, and environmental would be significantly related to sedentary time in individuals post-stroke. METHODS: This was a cross-sectional analysis of 280 individuals with chronic stroke. An activity monitor was used to measure sedentary (i.e. non-stepping) time. Five domains (8 predictors) were entered into a sequential linear regression model: physical capacity (6-Minute Walk Test, assistive device use), psychosocial (Activities Specific Balance Confidence Scale and Patient Health Questionnaire-9), physical health (Charlson Comorbidity Index and body mass index), cognition (Montreal Cognitive Assessment), and environmental (Area Deprivation Index). RESULTS: The 6-Minute Walk Test (ß = -0.39, p < .001), assistive device use (ß = 0.15, p = .03), Patient Health Questionnaire-9 (ß = 0.16, p = .01), and body mass index (ß = 0.11, p = .04) were significantly related to non-stepping time in individuals with chronic stroke. The model explained 28.5% of the variability in non-stepping time. CONCLUSIONS: This work provides new perspective on which variables may need to be addressed in programs targeting sedentary time in stroke. Such programs should consider physical capacity, depressive symptoms, and physical health.
Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Accidente Cerebrovascular/psicología , Estudios Transversales , Caminata , Daño Encefálico CrónicoRESUMEN
Background: Physical inactivity in people with chronic stroke profoundly affects daily function and increases recurrent stroke risk and mortality, making physical activity improvements an important target of intervention. We compared the effects of a highintensity walking intervention (FAST), a step activity monitoring behavioral intervention (SAM), or a combined intervention (FAST+SAM) on physical activity (i.e., steps per day). We hypothesized the combined intervention would yield the greatest increase in steps per day. Methods: This assessor-blinded multi-site randomized controlled trial was conducted at four university/hospital-based laboratories. Participants were 21-85 years old, walking without physical assistance following a single, unilateral non-cerebellar stroke of ≥6 months duration, and randomly assigned to FAST, SAM, or FAST+SAM for 12 weeks (2-3 sessions/week). FAST training consisted of walking-related activities for 40 minutes/session at 70-80% heart rate reserve, while SAM received daily feedback and goal-setting of walking activity (steps per day). Assessors and study statistician were masked to group assignment.The a priori-determined primary outcome and primary endpoint was change in steps per day from pre- to post-intervention. Adverse events (AEs) were tracked after randomization. All randomized participants were included in the intent-to-treat analysis.This study is registered at ClinicalTrials.gov, NCT02835313. Findings: Participants were enrolled from July 18, 2016-November 16, 2021. Of 250 randomized participants (mean[SE] age 63[0.80], 116F/134M), 89 were assigned to FAST, 81 to SAM, and 80 to FAST+SAM. Steps per day significantly increased in both the SAM (mean[SE] 1542[267], 95%CI:1014-2069, p<0.001) and FAST+SAM groups (1307[280], 752-1861, p<0.001), but not in the FAST group (406[238], 63-876, p=0.09). There were no deaths or serious study-related AEs and all other minor AEs were similar between groups. Interpretation: Only individuals with chronic stroke who completed a step activity monitoring behavioral intervention with skilled coaching and goal progression demonstrated improvements in physical activity (steps per day).
RESUMEN
BACKGROUND: To assess the effects of the initial stepping limb on posterior fall recovery in individuals with chronic stroke, as well as to determine the benefits of fall-recovery training on these outcomes. METHODS: This was a single-group intervention study of 13 individuals with chronic stroke. Participants performed up to six training sessions, each including progressively challenging, treadmill-induced perturbations from a standing position. Progressions focused on initial steps with the paretic or non-paretic limb. The highest perturbation level achieved, the proportion of successful recoveries, step and trunk kinematics, as well as stance-limb muscle activation about the ankle were compared between the initial stepping limbs in the first session. Limb-specific outcomes were also compared between the first and last training sessions. FINDINGS: In the first session, initial steps with the non-paretic limb were associated with a higher proportion of success and larger perturbations than steps with the paretic limb (p = 0.02, Cohen's d = 0.8). Paretic-limb steps were wider relative to the center of mass (CoM; p = 0.01, d = 1.3), likely due to an initial standing position with the CoM closer to the non-paretic limb (p = 0.01, d = 1.4). In the last training session, participants recovered from a higher proportion of perturbations and advanced to larger perturbations (p < 0.05, d > 0.6). There were no notable changes in kinematic or electromyography variables with training (p > 0.07, d < 0.5). INTERPRETATION: The skill of posterior stepping in response to a perturbation can be improved with practice in those with chronic stroke, we were not able to identify consistent underlying kinematic mechanisms behind this adaptation.
Asunto(s)
Accidentes por Caídas , Equilibrio Postural/fisiología , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/fisiopatología , Adaptación Fisiológica/fisiología , Adulto , Anciano , Fenómenos Biomecánicos , Enfermedad Crónica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Posición de PieRESUMEN
Background: Stroke survivors are more sedentary than the general public. Previous research on stroke activity focuses on linear quantities. Non-linear measures, such as Jensen-Shannon Divergence and Lempel-Ziv Complexity, may help explain when and how stroke survivors move so that interventions to increase activity may be designed more effectively. Objectives: Our objective was to understand what factors affect a stroke survivor's physical activity, including weather, by characterizing activity by step counts, structure, and complexity. Methods: A custom MATLAB code was used to analyze clinical trial (NCT02835313, https://clinicaltrials.gov/ct2/show/NCT02835313) data presented as minute by minute step counts. Six days of data were analyzed for 142 participants to determine the regularity of activity structure across days and complexity patterns of varied cadences. The effect of steps on structure and complexity, the season's effect on steps, structure, and complexity, and the presence of precipitation's effect on steps and complexity were all analyzed. Results: Step counts and regularity were linearly related (p < 0.001). Steps and complexity were quadratically related (r 2 = 0.70 for mean values, 0.64 for daily values). Season affected complexity between spring and winter (p = 0. 019). Season had no effect on steps or structure. Precipitation had no effect on steps or complexity. Conclusions: Stroke survivors with high step counts are active at similar times each day and have higher activity complexities as measured through patterns of movement at different intensity levels. Non-linear measures, such as Jensen-Shannon Divergence and Lempel-Ziv Complexity, are valuable in describing a person's activity. Weather affects our activity parameters in terms of complexity between spring and winter.
RESUMEN
Wastewater workers are exposed to different occupational hazards such as chemicals, gases, viruses, and bacteria. Personal protective equipment (PPE) is a significant factor that can reduce or decrease the probability of an accident from hazardous exposures to chemicals and microbial contaminants. The purpose of this study was to examine wastewater worker's beliefs and practices on wearing PPE through the integration of the Health Belief Model (HBM), identify the impact that management has on wastewater workers wearing PPE, and determine the predictors of PPE compliance among workers in the wastewater industry. Data was collected from 272 wastewater workers located at 33 wastewater facilities across the southeast region of the United States. Descriptive statistical analysis was conducted to present frequency distributions of participants' knowledge and compliance with wearing PPE. Univariate and multiple linear regression models were applied to determine the association of predictors of interest with PPE compliance. Wastewater workers were knowledgeable of occupational exposures and PPE requirements at their facility. Positive predictors of PPE compliance were perceived susceptibility and perceived severity of contracting an occupational illness (p < 0.05). A negative association was identified between managers setting the example of wearing PPE sometimes and PPE compliance (p < 0.05). Utilizing perceived susceptibility and severity for safety programs and interventions may improve PPE compliance among wastewater workers.
Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Equipo de Protección Personal/estadística & datos numéricos , Eliminación de Residuos Líquidos/instrumentación , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Exposición Profesional/análisis , Sudeste de Estados Unidos , Aguas Residuales , Adulto JovenRESUMEN
BACKGROUND: To study the effects of the initial stepping limb on anterior fall-recovery performance and kinematics, as well as to determine the benefits of fall-recovery training on those outcomes in individuals with chronic stroke. METHODS: Single-group intervention of 15 individuals with chronic stroke who performed up to six sessions of fall-recovery training. Each session consisted of two progressions of treadmill-induced perturbations to induce anterior falls from a standing position. Progressions focused on initial steps with the paretic or non-paretic limb. Fall-recovery performance (the highest disturbance level achieved and the proportion of successful recoveries), as well as step and trunk kinematics were compared between the initial stepping limbs on the first session. Limb-specific outcomes were also compared between the first and last training sessions. FINDINGS: There were no between-limb differences in fall-recovery performance in the first session. With training, participants successfully recovered from a higher proportion of falls (p'sâ¯=â¯0.01, Cohen's d'sâ¯>â¯0.7) and progressed to larger perturbation magnitudes (p'sâ¯<â¯0.06, d'sâ¯>â¯0.5). Initial steps with the paretic limb were wider and shorter relative to the center of mass (p'sâ¯<â¯0.06, d'sâ¯>â¯0.5). With training, initial paretic-limb steps became longer relative to the CoM (pâ¯=â¯0.03, dâ¯=â¯0.7). Trunk forward rotation was reduced when first stepping with the non-paretic limb (pâ¯=â¯0.03, dâ¯=â¯0.6). INTERPRETATION: The initial stepping limb affects relevant step kinematics during anterior fall recovery. Fall-recovery training improved performance and select kinematic outcomes in individuals with chronic stroke.
Asunto(s)
Accidentes por Caídas/prevención & control , Terapia por Ejercicio/métodos , Equilibrio Postural , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Adulto , Anciano , Fenómenos Biomecánicos , Prueba de Esfuerzo , Extremidades , Femenino , Humanos , Masculino , Persona de Mediana Edad , Torso , Resultado del TratamientoRESUMEN
BACKGROUND: Recent research demonstrated that the symmetry of corticomotor drive with the paretic and nonparetic plantarflexor muscles was related to the biomechanical ankle moment strategy that people with chronic stroke used to achieve their greatest walking speeds. Rehabilitation strategies that promote corticomotor balance might improve poststroke walking mechanics and enhance functional ambulation. OBJECTIVE: The study objectives were to test the effectiveness of a single session of gait training using functional electrical stimulation (FES) to improve plantarflexor corticomotor symmetry and plantarflexion ankle moment symmetry and to determine whether changes in corticomotor symmetry were related to changes in ankle moment symmetry within the session. DESIGN: This was a repeated-measures crossover study. METHODS: On separate days, 20 people with chronic stroke completed a session of treadmill walking either with or without the use of FES of their ankle dorsi- and plantarflexor muscles. We calculated plantarflexor corticomotor symmetry using transcranial magnetic stimulation and plantarflexion ankle moment symmetry during walking between the paretic and the nonparetic limbs before and after each session. We compared changes and tested relationships between corticomotor symmetry and ankle moment symmetry following each session. RESULTS: Following the session with FES, there was an increase in plantarflexor corticomotor symmetry that was related to the observed increase in ankle moment symmetry. In contrast, following the session without FES, there were no changes in corticomotor symmetry or ankle moment symmetry. LIMITATIONS: No stratification was made on the basis of lesion size, location, or clinical severity. CONCLUSIONS: These findings demonstrate, for the first time (to our knowledge), the ability of a single session of gait training with FES to induce positive corticomotor plasticity in people in the chronic stage of stroke recovery. They also provide insight into the neurophysiologic mechanisms underlying improvements in biomechanical walking function.