Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33539787

RESUMEN

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Carcinogénesis , Proteínas de Ciclo Celular , Glioblastoma , Factores de Intercambio de Guanina Nucleótido , Mitosis/efectos de la radiación , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferasas , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/efectos de la radiación , Quinasa de la Caseína II/genética , Quinasa de la Caseína II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Mitosis/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Cell Biol Int ; 48(3): 311-324, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38233982

RESUMEN

Previously, we demonstrated that the expression of THBS1 is increased in esophageal squamous cell carcinoma (ESCC) tissues and is correlated with lymph node metastasis and poor prognosis, indicating that THBS1 might be a candidate oncogene in ESCC. In this study, we future studied the specific role of THBS1 in ESCC and its molecular mechanism. Silencing THBS1 expression resulted in inhibition of cell migration and cell invasion of ESCC cells, the decrease of colony formation and proliferation. Tube formation of human umbilical vein endothelial cells (HUVECs) in vitro was decreased when cultured with conditioned medium from THBS1-silenced cells. The expression of CD31, a marker for blood vessel endothelial cells, was decreased in tumor tissues derived from THBS1-silenced tumors in vivo. Silencing THBS1 leaded the decreased of hypoxia-inducible factor-1α (HIF-1α), HIF-1ß, and VEGFA protein. The expression of p-ERK and p-AKT were declined in HUVECs following incubation with conditioned medium from THBS1-silenced ESCC cells compared conditioned medium from control cells. Furthermore, the treatment with bevacizumab boosted the decrease of the p-ERK and p-AKT levels in HUVECs incubated with the conditioned medium from THBS1-silenced ESCC cells. THBS1 silencing combined with bevacizumab blocked VEGF, inhibited to the tube formation, colony formation and migration of HUVECs, which were superior to that of bevacizumab alone. We presumed that THBS1 can enhance HIF-1/VEGF signaling and subsequently induce angiogenesis by activating the AKT and ERK pathways in HUVECs, resulting in bevacizumab resistance. THBS1 would be a potential target in tumor antiangiogenesis therapies.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Bevacizumab/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Esofágicas/patología , Angiogénesis , Medios de Cultivo Condicionados/farmacología , Línea Celular Tumoral , Transducción de Señal , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
3.
Genomics ; 115(6): 110732, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37866660

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common invasive and pernicious cancer with a low five-year survival rate. To identify potential therapeutic targets, we first investigated the characteristics of cuproptosis genes (CUGs) in ESCC. The expression patterns of 10 CUGs (FDX1, LIPT1, LIAS, DLAT, DLD, PDHA1, PDHB, GLS, MTF1, and CDKN2A) were analyzed to identify ESCC-relevant targets. Weighted correlation network analysis (WGCNA) was performed to obtain CUG-related genes (CRGs). A total of seven differentially expressed genes were identified (FDX1, DLAT, LIAS, PDHB, MTF1, GLS, and CDKN2A). DLAT was upregulated in stage III, and LIPT1 was upregulated in N0 + N1 cancers. The high expression of CDKN2A, and PDHA1, was related to better overall survival, whereas the low expression of LIAS was related to better clinical outcomes. WGCNA was performed to get CUG-related genes (CRGs) and showed three key modules that related to FDX1, DLAT, and LIPT1. Moreover, CRGs (BTLA, CT47A1, and PRRX1) were selected to construct a risk score model in order to predict the survival and prognosis of patients with ESCC. Additionally, the cuproptosis score based on CUGs and a nomogram constructed based on it helped accurately predict the prognosis of patients with ESCC; thus, maybe it can be used for the clinical diagnosis of ESCC. The results also showed that milciclib might inhibit the proliferation and migration of KYSE150 and KYSE510 cells by targeting CDKN2A. In conclusion, the abovementioned CUGs and CRGs play a crucial role in tumorigenesis and cancer progression in ESCC, indicating their potential as therapeutic targets.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/genética , Carcinogénesis , Transformación Celular Neoplásica , Expresión Génica , Apoptosis , Proteínas de Homeodominio
4.
Dokl Biochem Biophys ; 510(1): 132-143, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37582875

RESUMEN

LOX (Lysyl oxidase) family participates in the catalysis of collagen and elastin to maintain ECM homeostasis. Glioma is the most common primary brain tumor and LOX family has not been systemic studied in glioma. In this study, we found LOX family members are upregulated expressed in gliomas samples. A protein-protein interaction network (PPIN) was construct to visualize and understand the differential expression pattern, as well as functional annotation, for LOX family and their interacting proteins, which involved in collagen fibril organization and MAPK signaling pathway. Through subcellular localization distribution, the LOX family members distribute both intracellular and extracellular. All five LOX members are consistently significantly correlate with dendritic cell both in immune infiltrate of GBM and LGG. Survival analysis showed that high expression of LOX family is associated with a poor prognosis of gliomas patients. These analyses provide important clues to identify the potential biological roles for LOX family in gliomas, which might serve as diagnosis markers.


Asunto(s)
Glioma , Proteína-Lisina 6-Oxidasa , Humanos , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/análisis , Proteína-Lisina 6-Oxidasa/metabolismo , Relevancia Clínica , Colágeno/metabolismo , Glioma/genética
5.
Amino Acids ; 51(5): 813-828, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30900087

RESUMEN

Lysyl oxidase-like 4 (LOXL4), a member of the LOX family proteins, catalyzes oxidative deamination of lysine residues in collagen and elastin, which are responsible for maintaining extracellular matrix homeostasis. In this study, the mRNA expression of LOXL4 in seven esophageal squamous cell carcinoma (ESCC) cell lines and 15 ESCC pairs of clinical samples were examined. Furthermore, LOXL4 protein levels in the ESCC cell lines were determined using western blotting. With the use of immunofluorescence, LOXL4 was observed to be localized primarily in the cytoplasm, but was also present in the nucleus. In addition, the results indicated that the upregulated expression of LOXL4 was associated with poor survival in patients with ESCC even following curative resection (P = 0.010). Similar Kaplan-Meier estimator curves for proteins that interact with LOXL4, SUV39H1 (P = 0.014) and COL2A1 (P = 0.011), were plotted. The analyses based on the protein-protein interaction network depicted the expression of LOXL4 and its associated proteins as well as their functions, suggesting that LOXL4 and its associated proteins may serve a significant role in the development and progression of ESCC. In conclusion, the results of the present study suggest that LOXL4 is a potential biomarker for patients with ESCC, as well as SUV39H1 and COL2A1, and high expression levels of these genes are associated with poor prognosis in patients with ESCC.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias Esofágicas/metabolismo , Regulación Neoplásica de la Expresión Génica , Aminoácido Oxidorreductasas/genética , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Mapas de Interacción de Proteínas , Proteína-Lisina 6-Oxidasa , Tasa de Supervivencia , Células Tumorales Cultivadas
6.
Amino Acids ; 50(6): 685-697, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29700654

RESUMEN

Heat-shock proteins (HSPs), one of the evolutionarily conserved protein families, are widely found in various organisms, and play important physiological functions. Nevertheless, HSPs have not been systematically analyzed in esophageal squamous cell carcinoma (ESCC). In this study, we applied the protein-protein interaction (PPI) network methodology to explore the characteristics of HSPs, and integrate their expression in ESCC. First, differentially expressed HSPs in ESCC were identified from our previous RNA-seq data. By constructing a specific PPI network, we found differentially expressed HSPs interacted with hundreds of neighboring proteins. Subcellular localization analyses demonstrated that HSPs and their interacting proteins distributed in multiple layers, from membrane to nucleus. Functional enrichment annotation analyses revealed known and potential functions for HSPs. KEGG pathway analyses identified four significant enrichment pathways. Moreover, three HSPs (DNAJC5B, HSPA1B, and HSPH1) could serve as promising targets for prognostic prediction in ESCC, suggesting these HSPs might play a significant role in the development of ESCC. These multiple bioinformatics analyses have provided a comprehensive view of the roles of heat-shock proteins in esophageal squamous cell carcinoma.


Asunto(s)
Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteínas de Neoplasias/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Humanos , Masculino
7.
Biochim Biophys Acta ; 1853(10 Pt A): 2240-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26190820

RESUMEN

Lipocalin 2 (LCN2) is a poor prognostic factor in esophageal squamous cell carcinoma (ESCC), however its functional roles and molecular mechanisms of action remain to be clarified. Here, we described the functions and signaling pathways for LCN2 in ESCC. Overexpression of LCN2 in ESCC cells accelerated cell migration and invasion in vitro, and promoted lung metastasis in vivo. Blocking LCN2 expression inhibited its pro-oncogenic effect. Either overexpression of LCN2 or treatment with recombinant human LCN2 protein enhanced the activation of MEK/ERK pathway, which in turn increases endogenous LCN2 to increase MMP-9 activity. The decreased p-cofilin and increased p-ERM induced by pERK1/2 cause the cytoskeleton F-actin rearrangement and alter the behavior of ESCC cells mediated by LCN2. As a consequence, activation of MMP-9 and the rearrangement of F-actin throw light on the mechanisms for LCN2 in ESCC. These results imply that LCN2 promotes the migration and invasion of ESCC cells through a novel positive feedback loop.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Carcinoma de Células Escamosas/metabolismo , Movimiento Celular , Neoplasias Esofágicas/metabolismo , Lipocalinas/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Actinas/genética , Actinas/metabolismo , Proteínas de Fase Aguda/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Citoesqueleto/genética , Citoesqueleto/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Humanos , Lipocalina 2 , Lipocalinas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogénicas/genética
8.
Carcinogenesis ; 35(2): 292-301, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24064224

RESUMEN

To further our understanding of the pathobiology of esophageal squamous cell carcinoma (ESCC), we previously performed microRNA profiling that revealed downregulation of miR-200b in ESCC. Using quantitative real-time PCR applied to 88 patient samples, we confirmed that ESCC tumors expressed significantly lower levels of miR-200b compared with the respective adjacent benign tissues (P = 0.003). Importantly, downregulation of miR-200b significantly correlated with shortened survival (P = 0.025), lymph node metastasis (P = 0.002) and advanced clinical stage (P = 0.020) in ESCC patients. Quantitative mass spectrometry identified 57 putative miR-200b targets, including Kindlin-2, previously implicated in the regulation of tumor invasiveness and actin cytoskeleton in other cell types. Enforced expression of miR-200b mimic in ESCC cells led to a decrease of Kindlin-2 expression, whereas transfection of miR-200b inhibitor induced Kindlin-2 expression. Furthermore, transfection of miR-200b mimic or knockdown of Kindlin-2 in ESCC cells decreased cell protrusion and focal adhesion (FA) formation, reduced cell spreading and invasiveness/migration. Enforced expression of Kindlin-2 largely abrogated the inhibitory effects of miR-200b on ESCC cell invasiveness. Mechanistic studies revealed that Rho-family guanosine triphosphatases and FA kinase mediated the biological effects of the miR-200b-Kindlin-2 axis in ESCC cells. To conclude, loss of miR-200b, a frequent biochemical defect in ESCC, correlates with aggressive clinical features. The tumor suppressor effects of miR-200b may be due to its suppression of Kindlin-2, a novel target of miR-200b that modulates actin cytoskeleton, FA formation and the migratory/invasiveness properties of ESCC.


Asunto(s)
Carcinoma de Células Escamosas/patología , Citoesqueleto/metabolismo , Neoplasias Esofágicas/patología , Adhesiones Focales/fisiología , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas de Neoplasias/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidad , Adhesión Celular/fisiología , Movimiento Celular/fisiología , Proliferación Celular , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/mortalidad , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Mutagénesis Sitio-Dirigida , Mutación/genética , Invasividad Neoplásica , Fosforilación , Pronóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tasa de Supervivencia , Células Tumorales Cultivadas
9.
Biochem Cell Biol ; 92(5): 379-89, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25275797

RESUMEN

Lysyl oxidase-like 2 (LOXL2) participates in every stage of cancer progression and promotes invasion and metastasis. In this study, we identified a novel alternative splicing isoform of LOXL2, namely LOXL2 Δe13, which lacked exon 13. Deletion of exon 13 caused an open reading frame shift and produced a truncated protein. LOXL2 Δe13 was expressed ubiquitously in cell lines and tissues and was mainly localized to the cytoplasm. Although it showed impaired deamination enzymatic activity compared with full-length LOXL2, LOXL2 Δe13 promoted the cell mobility and invasion of esophageal squamous cell carcinoma (ESCC) cells to greater degrees. In further research on the mechanisms, gene expression profiling and signaling pathway analysis revealed that LOXL2 Δe13 induced the expression of MAPK8 without affecting the FAK, AKT, and ERK signaling pathways. RNAi-mediated knockdown of MAPK8 could block the cell migration promoted by LOXL2De13, but it had little effect on that of full-length LOXL2. Our data suggest that LOXL2 Δe13 modulates the effects of cancer cell migration and invasion through a different mechanism from that of full-length LOXL2 and that it may play a very important role in tumor carcinogenesis and progression.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , Isoformas de Proteínas , Empalme Alternativo/genética , Aminoácido Oxidorreductasas/metabolismo , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Movimiento Celular , Neoplasias Esofágicas/enzimología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Quinasa 1 de Adhesión Focal/metabolismo , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Invasividad Neoplásica , Isoformas de Proteínas/genética , Transducción de Señal/fisiología
10.
J Pathol ; 231(2): 257-70, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23836524

RESUMEN

In contrast to the well-recognized loss of adherens junctions in cancer progression, the role of desmosomal components in cancer development has not been well explored. We previously demonstrated that desmocollin-2 (DSC2), a desmosomal cadherin protein, is reduced in oesophageal squamous cell carcinoma (ESCC), and is associated with enhanced tumour metastasis and poor prognosis. Here, we report that restoration of DSC2 in ESCC cells impeded cell migration and invasion both in vitro and in vivo, whereas siRNA-mediated suppression of DSC2 expression increased cell motility. In E-cadherin-expressing ESCC cells, DSC2 restoration strengthened E-cadherin-mediated adherens junctions and promoted the localization of ß-catenin at these junctions, which indirectly inhibited ß-catenin-dependent transcription. These effects of DSC2 were not present in EC109 cells that lacked E-cadherin expression. ESCC patients with tumours that had reduced E-cadherin and negative DSC2 had poorer clinical outcomes than patients with tumours that lacked either E-cadherin or DSC2, implying that the invasive potential of ESCC cells was restricted by both DSC2 and E-cadherin-dependent junctions. Further studies revealed that DSC2 was a downstream target of miR-25. Enhanced miR-25 promoted ESCC cell invasiveness, whereas restoration of DSC2 abolished these effects. Collectively, our work suggests that miR-25-mediated down-regulation of DSC2 promotes ESCC cell aggressiveness through redistributing adherens junctions and activating beta-catenin signalling.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Desmocolinas/metabolismo , Neoplasias Esofágicas/metabolismo , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Transducción de Señal/fisiología , beta Catenina/metabolismo , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Adulto , Anciano , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Desmocolinas/genética , Regulación hacia Abajo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Desnudos , MicroARNs/genética , Persona de Mediana Edad , Invasividad Neoplásica/patología , Transfección , Trasplante Heterólogo
11.
ScientificWorldJournal ; 2014: 431792, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25254241

RESUMEN

LOXL2 (lysyl oxidase-like 2), an enzyme that catalyzes oxidative deamination of lysine residue, is upregulated in esophageal squamous cell carcinoma (ESCC). A LOXL2 splice variant LOXL2-e13 and its wild type were overexpressed in ESCC cells followed by microarray analyses. In this study, we explored the potential role and molecular mechanism of LOXL2-e13 based on known protein-protein interactions (PPIs), following microarray analysis of KYSE150 ESCC cells overexpressing a LOXL2 splice variant, denoted by LOXL2-e13, or its wild-type counterpart. The differentially expressed genes (DEGs) of LOXL2-WT and LOXL2-e13 were applied to generate individual PPI subnetworks in which hundreds of DEGs interacted with thousands of other proteins. These two DEG groups were annotated by Functional Annotation Chart analysis in the DAVID bioinformatics database and compared. These results found many specific annotations indicating the potential specific role or mechanism for LOXL2-e13. The DEGs of LOXL2-e13, comparing to its wild type, were prioritized by the Random Walk with Restart algorithm. Several tumor-related genes such as ERO1L, ITGA3, and MAPK8 were found closest to LOXL2-e13. These results provide helpful information for subsequent experimental identification of the specific biological roles and molecular mechanisms of LOXL2-e13. Our study also provides a work flow to identify potential roles of splice variants with large scale data.


Asunto(s)
Empalme Alternativo , Aminoácido Oxidorreductasas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Algoritmos , Aminoácido Oxidorreductasas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Redes Reguladoras de Genes/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Genéticos , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas/genética
12.
Biochem Mol Biol Educ ; 51(3): 263-275, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36951485

RESUMEN

Presently, a variety of policies and measures has implemented to enhance the scientific research and innovation ability of medical students, but in the process of practice, there are many problems, such as they lack of independent topic selection ability, weak scientific research skills, lack of autonomous learning ability, the research results are simple and ineffective, limited teacher guidance time and so on. This paper attempted to build an effective model for the promotion of medical students' scientific research and innovation ability, in order to establish an efficacy evaluation model of the "Medical students' Innovative Scientific Research Program." Undergraduates, graduate assistants, and tutors were interviewed with the Behavioral Event Interview technique, and a questionnaire of efficacy evaluation characteristics concluded from the interviews was formed. The questionnaire was conducted on medical students in the Medical students' Innovative Scientific Research Program, and the constructed model was analyzed using reliability analysis, validity analysis, and variation analysis. At the same time, the experimental teaching models are summarized and combed, and compared with other methods such as independent sample test. The results show the model could effectively evaluate the efficacy of the Medical students' Innovative Scientific Research Program and its teaching model is effective in cultivating medical students' learning and scientific research ability. It can provide theoretical support and practical reference for the evaluation and reform of the teaching modes related to the cultivation of scientific and innovative ability of medical students.


Asunto(s)
Estudiantes de Medicina , Humanos , Reproducibilidad de los Resultados , Aprendizaje , Bioquímica , Biología Molecular
13.
Mol Oncol ; 17(11): 2451-2471, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37753805

RESUMEN

During malignant tumour development, the extracellular matrix (ECM) is usually abnormally regulated. Dysregulated expression of lysyl oxidase-like 2 (LOXL2), matrix metalloproteinase 9 (MMP9) and lipocalin 2 (LCN2) are associated with ECM remodelling. In this study, protein-protein interaction assays indicated that LCN2 and LOXL2 interactions and LCN2 and MMP9 interactions occurred both intracellularly and extracellularly, but interactions between LOXL2 and MMP9 only occurred intracellularly. The LCN2/LOXL2/MMP9 ternary complex promoted migration and invasion of oesophageal squamous cell carcinoma (ESCC) cells, as well as tumour growth and malignant progression in vivo, while the iron chelator deferoxamine mesylate (DFOM) inhibited ESCC tumour growth. Co-overexpression of LCN2, LOXL2 and MMP9 enhanced the ability of tumour cells to degrade fibronectin and Matrigel, increased the formation and extension of filopodia, and promoted the rearrangement of microfilaments through upregulation of profilin 1. In addition, the LCN2/LOXL2/MMP9 ternary complex promoted the expression of testican-1 (SPOCK1), and abnormally activated the FAK/AKT/GSK3ß signalling pathway. In summary, the LCN2/LOXL2/MMP9 ternary complex promoted the migration and invasion of cancer cells and malignant tumour progression through multiple mechanisms and could be a potential therapeutic target.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Lipocalina 2/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Transducción de Señal , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteoglicanos/metabolismo , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo
14.
J Surg Oncol ; 105(2): 175-82, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21882196

RESUMEN

BACKGROUND AND OBJECTIVES: microRNAs (miRNAs), small non-coding RNAs, are always aberrantly expressed in many diseases including human cancers. The aim of this study was to examine and determine the clinical significance of hsa-miR-31, hsa-miR-142-3p, hsa-miR-338-3p, and hsa-miR-1261 expression in esophageal squamous cell carcinoma (ESCC). METHODS: Expression levels of four selected miRNAs, initially evaluated by microarray, were validated by qRT-PCR. Various statistical methods were used to analyze the relationship between miRNA expression and clinicopathologic features and prognosis in 91 patients with ESCC. RESULTS: MiR-31 and miR-142-3p expression were correlated to histological differentiation in ESCC (P < 0.05, Student's t-test); high miR-142-3p expression was associated with a poor prognosis in all 91 ESCC patients (P = 0.014, log-rank) and identified as an independent prognostic factor in ESCC (P = 0.017, univariate Cox; P = 0.022, multivariate Cox). More importantly, stratified analysis indicated that high miR-142-3p expression was correlated to a poor prognosis within good-prognosis groups comprised of ESCC patients with small tumor size, negative lymph node metastasis, or early stage (all P < 0.05). CONCLUSION: The main findings suggest that miR-142-3p is involved in the progression of ESCC and is a potential prognostic biomarker for ESCC.


Asunto(s)
Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Neoplasias Esofágicas/genética , MicroARNs/genética , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Estudios de Casos y Controles , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Esófago/metabolismo , Esófago/patología , Femenino , Estudios de Seguimiento , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Estadificación de Neoplasias , Análisis de Secuencia por Matrices de Oligonucleótidos , Pronóstico , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tasa de Supervivencia
15.
Biochem Cell Biol ; 89(3): 314-24, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21612443

RESUMEN

Neutrophil gelatinase-associated lipocalin (NGAL) expression has been found to be upregulated in a variety of tumors, but the mechanism of NGAL elevation in gastric carcinoma remains unknown. Here, immunohistochemistry was applied to analyze NGAL expression in gastric carcinoma patients. Reverse transcription PCR, Western blot, and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate NGAL mRNA and protein levels before and after 12-O-tetradecanoylphorbol-13-acetate (TPA) induction. Luciferase reporter assay was carried out to identify the core cis element in NGAL promoter. The binding ability and specificity of transcription factors were analyzed by electrophoretic mobility-shift assay (EMSA) and chromatin immunoprecipitation (ChIP), respectively. Results showed that NGAL was overexpressed in gastric tumor tissues. Gastric cancer cells treated with TPA resulted in the transactivation of NGAL promoter and the upregulation of its mRNA and protein levels. We identified the -110 to -79 sequence segment upstream from the transcription initiation site of NGAL as a TPA responsive element (TRE) and confirmed that C/EBPß was able to bind to the -87 to -79 segment. Forced expression of C/EBPß significantly increased the promoter activity of NGAL as well as its mRNA level. These results suggest that NGAL is overexpressed in gastric cancer, the binding of C/EBPß to the TRE of its gene promoter mediates its TPA-induced overexpression in gastric carcinoma cells.


Asunto(s)
Proteínas de Fase Aguda/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Carcinoma/metabolismo , Lipocalinas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/metabolismo , Acetato de Tetradecanoilforbol/farmacología , Transcripción Genética/efectos de los fármacos , Proteínas de Fase Aguda/genética , Secuencia de Bases , Western Blotting , Proteína beta Potenciadora de Unión a CCAAT/genética , Carcinoma/genética , Carcinoma/patología , Inmunoprecipitación de Cromatina , Ensayo de Cambio de Movilidad Electroforética , Genes Reporteros , Humanos , Lipocalina 2 , Lipocalinas/genética , Luciferasas/análisis , Datos de Secuencia Molecular , Plásmidos , Proteínas Proto-Oncogénicas/genética , ARN Mensajero/análisis , Elementos de Respuesta/efectos de los fármacos , Transducción de Señal/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transfección , Células Tumorales Cultivadas , Regulación hacia Arriba
16.
Cell Biosci ; 11(1): 36, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563334

RESUMEN

Alternative splicing (AS) is an important biological process for regulating the expression of various isoforms from a single gene and thus to promote proteome diversity. In this study, RNA-seq data from 15 pairs of matched esophageal squamous cell carcinoma (ESCC) and normal tissue samples as well as two cell lines were analyzed. AS events with significant differences were identified between ESCC and matched normal tissues, which were re-annotated to find protein coding genes or non-coding RNAs. A total of 45,439 AS events were found. Of these, 6019 (13.25%) significant differentially AS events were identified. Exon skipping (SE) events occupied the largest proportion of abnormal splicing events. Fifteen differential splicing events with the same trends of ΔΨ values in ESCC tissues, as well in the two cell lines were found. Four pathways and 20 biological processes related to pro-metastasis cell junction and migration were significantly enriched for the differentially spliced genes. The upregulated splicing factor SF3B4, which regulates 92 gene splicing events, could be a potential prognostic factor of ESCC. Differentially spliced genes, including HNRNPC, VCL, ZNF207, KIAA1217, TPM1 and CALD1 are shown with a sashimi plot. These results suggest that cell junction- and migration-related biological processes are influenced by AS abnormalities, and aberrant splicing events can be affected by splicing factor expression changes. The involved splicing factor SF3B4 was found to be a survival-related gene in ESCC and is presumed to regulate AS in multiple cancers. In summary, we identified significant differentially expressed AS events which may be related to the development of ESCC.

17.
Theranostics ; 10(19): 8721-8743, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32754274

RESUMEN

Over the past few decades, substantial evidence has convincingly revealed the existence of cancer stem cells (CSCs) as a minor subpopulation in cancers, contributing to an aberrantly high degree of cellular heterogeneity within the tumor. CSCs are functionally defined by their abilities of self-renewal and differentiation, often in response to cues from their microenvironment. Biological phenotypes of CSCs are regulated by the integrated transcriptional, post-transcriptional, metabolic, and epigenetic regulatory networks. CSCs contribute to tumor progression, therapeutic resistance, and disease recurrence through their sustained proliferation, invasion into normal tissue, promotion of angiogenesis, evasion of the immune system, and resistance to conventional anticancer therapies. Therefore, elucidation of the molecular mechanisms that drive cancer stem cell maintenance, plasticity, and therapeutic resistance will enhance our ability to improve the effectiveness of targeted therapies for CSCs. In this review, we highlight the key features and mechanisms that regulate CSC function in tumor initiation, progression, and therapy resistance. We discuss factors for CSC therapeutic resistance, such as quiescence, induction of epithelial-to-mesenchymal transition (EMT), and resistance to DNA damage-induced cell death. We evaluate therapeutic approaches for eliminating therapy-resistant CSC subpopulations, including anticancer drugs that target key CSC signaling pathways and cell surface markers, viral therapies, the awakening of quiescent CSCs, and immunotherapy. We also assess the impact of new technologies, such as single-cell sequencing and CRISPR-Cas9 screening, on the investigation of the biological properties of CSCs. Moreover, challenges remain to be addressed in the coming years, including experimental approaches for investigating CSCs and obstacles in therapeutic targeting of CSCs.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Antineoplásicos/farmacología , Progresión de la Enfermedad , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Células Madre Neoplásicas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
18.
Int J Biochem Cell Biol ; 125: 105795, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32580015

RESUMEN

Lysyl oxidase-like 2 (LOXL2) is a member of the lysyl oxidase (LOX) family that contributes to tumor cell metastasis. Our previous data identified two splice variants of LOXL2 (i.e., LOXL2 Δ72 and Δ13) in esophageal squamous cell carcinoma (ESCC) cells that increased cell invasiveness and migration but had lower LOX activities than wild-type LOXL2 (LOXL2 WT). We generated a series of LOXL2 deletion mutants with different deleted biochemical domains and examined the relationship between the cell migration abilities and catalytic activities, as well as subcellular locations, of these deletion mutants compared with LOXL2 WT in ESCC cells to explore the mechanism of LOXL2-driven ESCC cell migration. Our results indicated that the deletion mutants of LOXL2 had impaired deamination enzymatic activity; LOXL2 ΔSRCR4, which lacks the fourth scavenger receptor cysteine-rich (SRCR) domain, had lower enzymatic activity; and LOXL2 Y689F had no catalytic activity compared with LOXL2 WT. However these two mutants stimulated greater cellular migration than LOXL2 WT. Furthermore, the degree of cell migration promoted by LOXL2 ΔLO (in which the LOX-like domain was deleted) was higher than that of LOXL2 WT, and LOXL2 ΔSRCR3, which does not have the third SRCR domain, had lower LOX activity and cellular migration ability than LOXL2 WT. These results suggested that LOXL2 promotes ESCC cell migration independent of catalytic activity.


Asunto(s)
Empalme Alternativo , Movimiento Celular/genética , Neoplasias Esofágicas/enzimología , Carcinoma de Células Escamosas de Esófago/enzimología , Proteína-Lisina 6-Oxidasa/metabolismo , Catálisis , Línea Celular Tumoral , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Dominios Proteicos/genética , Proteína-Lisina 6-Oxidasa/genética , Eliminación de Secuencia
19.
DNA Cell Biol ; 39(7): 1228-1242, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32429692

RESUMEN

Heat shock protein (HSP) is a family of highly conserved protein, which exists widely in various organisms and has a variety of important physiological functions. Currently, there is no systematic analysis of HSPs in human glioma. The aim of this study was to investigate the characteristics of HSPs through constructing protein-protein interaction network (PPIN) considering the expression level of HSPs in glioma. After the identification of the differentially expressed HSPs in glioma tissues, a specific PPIN was constructed and found that there were many interactions between the differentially expressed HSPs in glioma. Subcellular localization analysis shows that HSPs and their interacting proteins distribute from the cell membrane to the nucleus in a multilayer structure. By functional enrichment analysis, gene ontology analysis, and Kyoto Encyclopedia of Genes and Genomes pathway analysis, the potential function of HSPs and two meaningful enrichment pathways was revealed. In addition, nine HSPs (DNAJA4, DNAJC6, DNAJC12, HSPA6, HSP90B1, DNAJB1, DNAJB6, DNAJC10, and SERPINH1) are prognostic markers for human brain glioma. These analyses provide a full view of HSPs about their expression, biological process, as well as clinical significance in glioma.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Glioma/genética , Proteínas de Choque Térmico/genética , Biomarcadores de Tumor/genética , Biología Computacional , Glioma/diagnóstico , Glioma/metabolismo , Glioma/patología , Proteínas de Choque Térmico/metabolismo , Humanos , Espacio Intracelular/metabolismo , Pronóstico , Mapas de Interacción de Proteínas
20.
Cancer Res ; 79(20): 5288-5301, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31462429

RESUMEN

Misregulated alternative RNA splicing (AS) contributes to the tumorigenesis and progression of human cancers, including glioblastoma (GBM). Here, we showed that a major splicing factor, serine and arginine rich splicing factor 3 (SRSF3), was frequently upregulated in clinical glioma specimens and that elevated SRSF3 was associated with tumor progression and a poor prognosis for patients with glioma. In patient-derived glioma stem-like cells (GSC), SRSF3 expression promoted cell proliferation, self-renewal, and tumorigenesis. Transcriptomic profiling identified more than 1,000 SRSF3-affected AS events, with a preference for exon skipping in genes involved with cell mitosis. Motif analysis identified the sequence of CA(G/C/A)CC(C/A) as a potential exonic splicing enhancer for these SRSF3-regulated exons. To evaluate the biological impact of SRSF3-affected AS events, four candidates were selected whose AS correlated with SRSF3 expression in glioma tissues, and their splicing pattern was modified using a CRISPR/Cas9 approach. Two functionally validated AS candidates were further investigated for the mechanisms underlying their isoform-specific functions. Specifically, following knockout of SRSF3, transcription factor ETS variant 1 (ETV1) gene showed exon skipping at exon 7, while nudE neurodevelopment protein 1 (NDE1) gene showed replacement of terminal exon 9 with a mutually exclusive exon 9'. SRSF3-regulated AS of these two genes markedly increased their oncogenic activity in GSCs. Taken together, our data demonstrate that SRSF3 is a key regulator of AS in GBM and that understanding mechanisms of misregulated AS could provide critical insights for developing effective therapeutic strategies against GBMs. SIGNIFICANCE: SRSF3 is a significant regulator of glioma-associated alternative splicing, implicating SRSF3 as an oncogenic factor that contributes to the tumor biology of GBM.


Asunto(s)
Empalme Alternativo , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Proteínas de Neoplasias/fisiología , ARN Mensajero/biosíntesis , Factores de Empalme Serina-Arginina/fisiología , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Sistemas CRISPR-Cas , División Celular , Línea Celular Tumoral , Autorrenovación de las Células , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Glioblastoma/metabolismo , Glioblastoma/patología , Células HEK293 , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Proteínas Asociadas a Microtúbulos/genética , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Trasplante de Neoplasias , Fosforilación , Pronóstico , Isoformas de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , ARN Mensajero/genética , Factores de Empalme Serina-Arginina/antagonistas & inhibidores , Factores de Empalme Serina-Arginina/genética , Huso Acromático/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA