Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Mol Cell ; 83(9): 1519-1526.e4, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37003261

RESUMEN

The impact of genome organization on the control of gene expression persists as a major challenge in regulatory biology. Most efforts have focused on the role of CTCF-enriched boundary elements and TADs, which enable long-range DNA-DNA associations via loop extrusion processes. However, there is increasing evidence for long-range chromatin loops between promoters and distal enhancers formed through specific DNA sequences, including tethering elements, which bind the GAGA-associated factor (GAF). Previous studies showed that GAF possesses amyloid properties in vitro, bridging separate DNA molecules. In this study, we investigated whether GAF functions as a looping factor in Drosophila development. We employed Micro-C assays to examine the impact of defined GAF mutants on genome topology. These studies suggest that the N-terminal POZ/BTB oligomerization domain is important for long-range associations of distant GAGA-rich tethering elements, particularly those responsible for promoter-promoter interactions that coordinate the activities of distant paralogous genes.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Cromatina/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Elementos de Facilitación Genéticos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Cell ; 81(17): 3542-3559.e11, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34380014

RESUMEN

The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails, and binding partially disassembled nucleosomes. Here, we systematically test these and other scenarios in Saccharomyces cerevisiae and find that FACT binds transcribed chromatin, not RNAPII. Through a combination of high-resolution genome-wide mapping, single-molecule tracking, and mathematical modeling, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. Our work clarifies how FACT interacts with genes, suggests a processive mechanism for FACT function, and provides a framework to further dissect the molecular mechanisms of transcription-coupled histone chaperoning.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética/genética , Factores de Elongación Transcripcional/metabolismo , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Alta Movilidad/genética , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleosomas/metabolismo , Unión Proteica , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética
3.
Mol Cell ; 81(17): 3560-3575.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34375585

RESUMEN

Transcription initiation by RNA polymerase II (RNA Pol II) requires preinitiation complex (PIC) assembly at gene promoters. In the dynamic nucleus, where thousands of promoters are broadly distributed in chromatin, it is unclear how multiple individual components converge on any target to establish the PIC. Here we use live-cell, single-molecule tracking in S. cerevisiae to visualize constrained exploration of the nucleoplasm by PIC components and Mediator's key role in guiding this process. On chromatin, TFIID/TATA-binding protein (TBP), Mediator, and RNA Pol II instruct assembly of a short-lived PIC, which occurs infrequently but efficiently within a few seconds on average. Moreover, PIC exclusion by nucleosome encroachment underscores regulated promoter accessibility by chromatin remodeling. Thus, coordinated nuclear exploration and recruitment to accessible targets underlies dynamic PIC establishment in yeast. Our study provides a global spatiotemporal model for transcription initiation in live cells.


Asunto(s)
Complejo Mediador/metabolismo , ARN Polimerasa II/metabolismo , Iniciación de la Transcripción Genética/fisiología , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Complejo Mediador/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Espacio-Temporal , Proteína de Unión a TATA-Box/genética , Factor de Transcripción TFIID/genética , Transcripción Genética/genética
4.
Cell ; 154(6): 1220-31, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034246

RESUMEN

The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.


Asunto(s)
Adenosina Trifosfatasas/química , Ensamble y Desensamble de Cromatina , ADN Helicasas/química , Complejos Multiproteicos/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/química , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Dimerización , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/metabolismo
5.
Cell ; 154(6): 1232-45, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-24034247

RESUMEN

The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. Whereas the multisubunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of SWR1 recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of dinucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA and the adjoining nucleosome core particle, allowing discrimination of gene promoters over gene bodies. Analysis of mutants indicates that the conserved Swc2/YL1 subunit and the adenosine triphosphatase domain of Swr1 are mainly responsible for binding to substrate. SWR1 binding is enhanced on nucleosomes acetylated by the NuA4 histone acetyltransferase, but recognition of nucleosome-free and nucleosomal DNA is dominant over interaction with acetylated histones. Such hierarchical cooperation between DNA and histone signals expands the dynamic range of genetic switches, unifying classical gene regulation by DNA-binding factors with ATP-dependent nucleosome remodeling and posttranslational histone modifications.


Asunto(s)
Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Histona Acetiltransferasas/metabolismo , Datos de Secuencia Molecular , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética
6.
Cell ; 143(5): 725-36, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21111233

RESUMEN

Histone variant H2A.Z-containing nucleosomes are incorporated at most eukaryotic promoters. This incorporation is mediated by the conserved SWR1 complex, which replaces histone H2A in canonical nucleosomes with H2A.Z in an ATP-dependent manner. Here, we show that promoter-proximal nucleosomes are highly heterogeneous for H2A.Z in Saccharomyces cerevisiae, with substantial representation of nucleosomes containing one, two, or zero H2A.Z molecules. SWR1-catalyzed H2A.Z replacement in vitro occurs in a stepwise and unidirectional fashion, one H2A.Z-H2B dimer at a time, producing heterotypic nucleosomes as intermediates and homotypic H2A.Z nucleosomes as end products. The ATPase activity of SWR1 is specifically stimulated by H2A-containing nucleosomes without ensuing histone H2A eviction. Remarkably, further addition of free H2A.Z-H2B dimer leads to hyperstimulation of ATPase activity, eviction of nucleosomal H2A-H2B, and deposition of H2A.Z-H2B. These results suggest that the combination of H2A-containing nucleosome and free H2A.Z-H2B dimer acting as both effector and substrate for SWR1 governs the specificity and outcome of the replacement reaction.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Dimerización , Histonas/química , Histonas/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
7.
Genes Dev ; 31(19): 1958-1972, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074736

RESUMEN

Histone CENP-A-containing nucleosomes play an important role in nucleating kinetochores at centromeres for chromosome segregation. However, the molecular mechanisms by which CENP-A nucleosomes engage with kinetochore proteins are not well understood. Here, we report the finding of a new function for the budding yeast Cse4/CENP-A histone-fold domain interacting with inner kinetochore protein Mif2/CENP-C. Strikingly, we also discovered that AT-rich centromere DNA has an important role for Mif2 recruitment. Mif2 contacts one side of the nucleosome dyad, engaging with both Cse4 residues and AT-rich nucleosomal DNA. Both interactions are directed by a contiguous DNA- and histone-binding domain (DHBD) harboring the conserved CENP-C motif, an AT hook, and RK clusters (clusters enriched for arginine-lysine residues). Human CENP-C has two related DHBDs that bind preferentially to DNA sequences of higher AT content. Our findings suggest that a DNA composition-based mechanism together with residues characteristic for the CENP-A histone variant contribute to the specification of centromere identity.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Modelos Moleculares , Nucleosomas/química , Nucleosomas/metabolismo , Saccharomyces cerevisiae , Secuencia Rica en At , Centrómero/química , Proteína A Centromérica/química , Proteínas Cromosómicas no Histona/química , ADN Satélite/metabolismo , Proteínas de Unión al ADN/metabolismo , Dimerización , Humanos , Unión Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Biol ; 17(5): e3000277, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31107867

RESUMEN

Chz1 is a specific chaperone for the histone variant H2A.Z in budding yeast. The ternary complex formed by Chz1 and H2A.Z-H2B dimer is the major in vivo substrate of Swi2/snif2-related 1 (SWR1), the ATP-dependent chromatin remodeling enzyme that deposits H2A.Z into chromatin. However, the structural basis for the binding preference of Chz1 for H2A.Z over H2A and the mechanism by which Chz1 modulates the histone replacement remain elusive. Here, we show that Chz1 utilizes 2 distinct structural domains to engage the H2A.Z-H2B dimer for optimal and specific recognition of H2A.Z. The middle region of Chz1 (Chz1-M) directly interacts with 2 highly conserved H2A.Z-specific residues (Gly98 and Ala57) and dictates a modest preference for H2A.Z-H2B. In addition, structural and biochemical analysis show that the C-terminal region of Chz1 (Chz1-C) harbors a conserved DEF/Y motif, which reflects the consecutive D/E residues followed by a single aromatic residue, to engage an arginine finger and a hydrophobic pocket in H2A.Z-H2B, enhancing the binding preference for H2A.Z-H2B. Furthermore, Chz1 facilitates SWR1-mediated H2A.Z deposition by alleviating inhibition caused by aggregation of excess free histones, providing insights into how Chz1 controls the bioavailability of H2A.Z to assist SWR1 in promoter-specific installation of a histone mark. Our study elucidates a novel H2A.Z-recognition mechanism and uncovers a molecular rationale for binding of free histone by specialized histone chaperones in vivo.


Asunto(s)
Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Cromatina/metabolismo , Unión Proteica , Multimerización de Proteína
9.
Mol Cell ; 53(3): 498-505, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24507717

RESUMEN

Histone variant H2A.Z-containing nucleosomes exist at most eukaryotic promoters and play important roles in gene transcription and genome stability. The multisubunit nucleosome-remodeling enzyme complex SWR1, conserved from yeast to mammals, catalyzes the ATP-dependent replacement of histone H2A in canonical nucleosomes with H2A.Z. How SWR1 catalyzes the replacement reaction is largely unknown. Here, we determined the crystal structure of the N-terminal region (599-627) of the catalytic subunit Swr1, termed Swr1-Z domain, in complex with the H2A.Z-H2B dimer at 1.78 Å resolution. The Swr1-Z domain forms a 310 helix and an irregular chain. A conserved LxxLF motif in the Swr1-Z 310 helix specifically recognizes the αC helix of H2A.Z. Our results show that the Swr1-Z domain can deliver the H2A.Z-H2B dimer to the DNA-(H3-H4)2 tetrasome to form the nucleosome by a histone chaperone mechanism.


Asunto(s)
Adenosina Trifosfatasas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Adenosina Trifosfatasas/fisiología , Secuencia de Aminoácidos , Ensamble y Desensamble de Cromatina/genética , Clonación Molecular , Cristalografía por Rayos X , Dimerización , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Difracción de Rayos X
10.
Mol Cell ; 43(3): 369-80, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816344

RESUMEN

The molecular architecture of centromere-specific nucleosomes containing histone variant CenH3 is controversial. We have biochemically reconstituted two distinct populations of nucleosomes containing Saccharomyces cerevisiae CenH3 (Cse4). Reconstitution of octameric nucleosomes containing histones Cse4/H4/H2A/H2B is robust on noncentromere DNA, but inefficient on AT-rich centromere DNA. However, nonhistone Scm3, which is required for Cse4 deposition in vivo, facilitates in vitro reconstitution of Cse4/H4/Scm3 complexes on AT-rich centromere sequences. Scm3 has a nonspecific DNA binding domain that shows preference for AT-rich DNA and a histone chaperone domain that promotes specific loading of Cse4/H4. In live cells, Scm3-GFP is enriched at centromeres in all cell cycle phases. Chromatin immunoprecipitation confirms that Scm3 occupies centromere DNA throughout the cell cycle, even when Cse4 and H4 are temporarily dislodged in S phase. These findings suggest a model in which centromere-bound Scm3 aids recruitment of Cse4/H4 to assemble and maintain an H2A/H2B-deficient centromeric nucleosome.


Asunto(s)
Centrómero/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/fisiología , Proteínas de Unión al ADN/química , Histonas/química , Nucleosomas/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Secuencia Rica en At , Sitios de Unión , Ciclo Celular/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/química , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/fisiología , Histonas/metabolismo , Modelos Moleculares , Nucleosomas/metabolismo , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Nucleic Acids Res ; 45(16): 9229-9243, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934480

RESUMEN

Nucleosomes are the most abundant protein-DNA complexes in eukaryotes that provide compaction of genomic DNA and are implicated in regulation of transcription, DNA replication and repair. The details of DNA positioning on the nucleosome and the DNA conformation can provide key regulatory signals. Hydroxyl-radical footprinting (HRF) of protein-DNA complexes is a chemical technique that probes nucleosome organization in solution with a high precision unattainable by other methods. In this work we propose an integrative modeling method for constructing high-resolution atomistic models of nucleosomes based on HRF experiments. Our method precisely identifies DNA positioning on nucleosome by combining HRF data for both DNA strands with the pseudo-symmetry constraints. We performed high-resolution HRF for Saccharomyces cerevisiae centromeric nucleosome of unknown structure and characterized it using our integrative modeling approach. Our model provides the basis for further understanding the cooperative engagement and interplay between Cse4p protein and the A-tracts important for centromere function.


Asunto(s)
Huella de ADN/métodos , ADN/química , Modelos Moleculares , Nucleosomas/química , Algoritmos , Centrómero/química , Proteínas Cromosómicas no Histona , División del ADN , Proteínas de Unión al ADN , Radical Hidroxilo , Conformación de Ácido Nucleico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae
12.
Genes Dev ; 25(3): 275-86, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21289071

RESUMEN

The maturation of T cells requires signaling from both cytokine and T-cell receptors to gene targets in chromatin, but how chromatin architecture influences this process is largely unknown. Here we show that thymocyte maturation post-positive selection is dependent on the nucleosome remodeling factor (NURF). Depletion of Bptf (bromodomain PHD finger transcription factor), the largest NURF subunit, in conditional mouse mutants results in developmental arrest beyond the CD4(+) CD8(int) stage without affecting cellular proliferation, cellular apoptosis, or coreceptor gene expression. In the Bptf mutant, specific subsets of genes important for thymocyte development show aberrant expression. We also observed defects in DNase I-hypersensitive chromatin structures at Egr1, a prototypical Bptf-dependent gene that is required for efficient thymocyte development. Moreover, chromatin binding of the sequence-specific factor Srf (serum response factor) to Egr1 regulatory sites is dependent on Bptf function. Physical interactions between NURF and Srf suggest a model in which Srf recruits NURF to facilitate transcription factor binding at Bptf-dependent genes. These findings provide evidence for causal connections between NURF, transcription factor occupancy, and gene regulation during thymocyte development.


Asunto(s)
Antígenos Nucleares/metabolismo , Diferenciación Celular , Cromatina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos Nucleares/genética , ADN/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Unión Proteica , Timo/citología , Factores de Transcripción/genética
13.
Nature ; 472(7342): 234-7, 2011 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-21412236

RESUMEN

The centromere is a unique chromosomal locus that ensures accurate segregation of chromosomes during cell division by directing the assembly of a multiprotein complex, the kinetochore. The centromere is marked by a conserved variant of conventional histone H3 termed CenH3 or CENP-A (ref. 2). A conserved motif of CenH3, the CATD, defined by loop 1 and helix 2 of the histone fold, is necessary and sufficient for specifying centromere functions of CenH3 (refs 3, 4). The structural basis of this specification is of particular interest. Yeast Scm3 and human HJURP are conserved non-histone proteins that interact physically with the (CenH3-H4)(2) heterotetramer and are required for the deposition of CenH3 at centromeres in vivo. Here we have elucidated the structural basis for recognition of budding yeast (Saccharomyces cerevisiae) CenH3 (called Cse4) by Scm3. We solved the structure of the Cse4-binding domain (CBD) of Scm3 in complex with Cse4 and H4 in a single chain model. An α-helix and an irregular loop at the conserved amino terminus and a shorter α-helix at the carboxy terminus of Scm3(CBD) wraps around the Cse4-H4 dimer. Four Cse4-specific residues in the N-terminal region of helix 2 are sufficient for specific recognition by conserved and functionally important residues in the N-terminal helix of Scm3 through formation of a hydrophobic cluster. Scm3(CBD) induces major conformational changes and sterically occludes DNA-binding sites in the structure of Cse4 and H4. These findings have implications for the assembly and architecture of the centromeric nucleosome.


Asunto(s)
Centrómero/química , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/química , Autoantígenos/metabolismo , Sitios de Unión , Centrómero/metabolismo , Proteína A Centromérica , Secuencia Conservada , ADN/química , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Nucleosomas/química , Nucleosomas/metabolismo , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo
14.
Proc Natl Acad Sci U S A ; 111(49): 17480-5, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422417

RESUMEN

Single molecule-based superresolution imaging has become an essential tool in modern cell biology. Because of the limited depth of field of optical imaging systems, one of the major challenges in superresolution imaging resides in capturing the 3D nanoscale morphology of the whole cell. Despite many previous attempts to extend the application of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM) techniques into three dimensions, effective localization depths do not typically exceed 1.2 µm. Thus, 3D imaging of whole cells (or even large organelles) still demands sequential acquisition at different axial positions and, therefore, suffers from the combined effects of out-of-focus molecule activation (increased background) and bleaching (loss of detections). Here, we present the use of multifocus microscopy for volumetric multicolor superresolution imaging. By simultaneously imaging nine different focal planes, the multifocus microscope instantaneously captures the distribution of single molecules (either fluorescent proteins or synthetic dyes) throughout an ∼ 4-µm-deep volume, with lateral and axial localization precisions of ∼ 20 and 50 nm, respectively. The capabilities of multifocus microscopy to rapidly image the 3D organization of intracellular structures are illustrated by superresolution imaging of the mammalian mitochondrial network and yeast microtubules during cell division.


Asunto(s)
Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Mitocondrias/metabolismo , Calibración , Colorantes Fluorescentes/química , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Modelos Moleculares , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo
15.
Nat Methods ; 10(1): 60-3, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23223154

RESUMEN

Conventional acquisition of three-dimensional (3D) microscopy data requires sequential z scanning and is often too slow to capture biological events. We report an aberration-corrected multifocus microscopy method capable of producing an instant focal stack of nine 2D images. Appended to an epifluorescence microscope, the multifocus system enables high-resolution 3D imaging in multiple colors with single-molecule sensitivity, at speeds limited by the camera readout time of a single image.


Asunto(s)
Caenorhabditis elegans/citología , Rastreo Celular , Imagenología Tridimensional/métodos , Microscopía Fluorescente , Neuronas/citología , Saccharomyces cerevisiae/citología , Animales , Neoplasias Óseas/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Osteosarcoma/enzimología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
J Biol Chem ; 288(32): 23182-93, 2013 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-23779104

RESUMEN

The evolutionarily conserved ATP-dependent chromatin remodeling enzyme Fun30 has recently been shown to play important roles in heterochromatin silencing and DNA repair. However, how Fun30 remodels nucleosomes is not clear. Here we report a nucleosome sliding activity of Fun30 and its role in transcriptional repression. We observed that Fun30 repressed the expression of genes involved in amino acid and carbohydrate metabolism, the stress response, and meiosis. In addition, Fun30 was localized at the 5' and 3' ends of genes and within the open reading frames of its targets. Consistent with its role in gene repression, we observed that Fun30 target genes lacked histone modifications often associated with gene activation and showed an increased level of ubiquitinated histone H2B. Furthermore, a genome-wide nucleosome mapping analysis revealed that the length of the nucleosome-free region at the 5' end of a subset of genes was changed in Fun30-depleted cells. In addition, the positions of the -1, +2, and +3 nucleosomes at the 5' end of target genes were shifted significantly, whereas the position of the +1 nucleosome remained largely unchanged in the fun30Δ mutant. Finally, we demonstrated that affinity-purified, single-component Fun30 exhibited a nucleosome sliding activity in an ATP-dependent manner. These results define a role for Fun30 in the regulation of transcription and indicate that Fun30 remodels chromatin at the 5' end of genes by sliding promoter-proximal nucleosomes.


Asunto(s)
Adenosina Trifosfato/metabolismo , Ensamble y Desensamble de Cromatina/fisiología , Nucleosomas/metabolismo , Regiones Promotoras Genéticas/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología , Adenosina Trifosfato/genética , Histonas/genética , Histonas/metabolismo , Nucleosomas/genética , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Ubiquitinación/fisiología
17.
Nat Cell Biol ; 26(4): 581-592, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548891

RESUMEN

Efficient gene expression requires RNA polymerase II (RNAPII) to find chromatin targets precisely in space and time. How RNAPII manages this complex diffusive search in three-dimensional nuclear space remains largely unknown. The disordered carboxy-terminal domain (CTD) of RNAPII, which is essential for recruiting transcription-associated proteins, forms phase-separated droplets in vitro, hinting at a potential role in modulating RNAPII dynamics. In the present study, we use single-molecule tracking and spatiotemporal mapping in living yeast to show that the CTD is required for confining RNAPII diffusion within a subnuclear region enriched for active genes, but without apparent phase separation into condensates. Both Mediator and global chromatin organization are required for sustaining RNAPII confinement. Remarkably, truncating the CTD disrupts RNAPII spatial confinement, prolongs target search, diminishes chromatin binding, impairs pre-initiation complex formation and reduces transcription bursting. The present study illuminates the pivotal role of the CTD in driving spatiotemporal confinement of RNAPII for efficient gene expression.


Asunto(s)
ARN Polimerasa II , Proteínas de Saccharomyces cerevisiae , ARN Polimerasa II/metabolismo , Transcripción Genética , Cromatina/genética , Cromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fosforilación
18.
Elife ; 132024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656237

RESUMEN

The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.


Asunto(s)
Disparidad de Par Base , ADN , Nucleosomas , Nucleosomas/metabolismo , Nucleosomas/química , Nucleosomas/genética , ADN/química , ADN/metabolismo , ADN/genética , Disparidad de Par Base/genética , Animales , Transferencia Resonante de Energía de Fluorescencia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenopus laevis
19.
bioRxiv ; 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38293098

RESUMEN

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start-sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and 2-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/sec on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.

20.
Elife ; 122024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38497611

RESUMEN

Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.


Asunto(s)
Cromatina , Nucleosomas , Adenosina Trifosfato/metabolismo , Cromatina/metabolismo , ADN/metabolismo , Nucleosomas/genética , Nucleosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Translocación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA