Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2402472, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38813745

RESUMEN

Despite significant advancements, current self-healing materials often suffer from a compromise between mechanical robustness and functional performance, particularly in terms of conductivity and responsiveness to environmental stimuli. Addressing this issue, the research introduces a self-healable and conductive copolymer, poly(ionic liquid-co-acrylic acid) (PIL-co-PAA), synthesized through free radical polymerization, and further optimized by incorporating thermoplastic polyurethane (TPU). This combination leverages the unique properties of each component, especially ion-dipole interactions and hydrogen bonds, resulting in a material that exhibits exceptional self-healing abilities and demonstrates enhanced mechanical properties and electrical conductivity. Moreover, the PIL-co-PAA/TPU films showcase alkaline-responsive behavior, a feature that broadens their applicability in dynamic environments. Through systematic characterization, including thermogravimetric analysis, tensile testing, and electrical properties measurements, the mechanisms behind the improved performance and functionality of these films are elucidated. The conductivities and ultimate tensile strength (σuts) of the PIL-co-PAA/TPU films regain 80% under 8 h healing process. To extend the applications for wearable devices, the self-healing properties of commercial cotton fabrics coated with the self-healable PIL-co-PAA are also investigated, demonstrating both self-healing and electrical properties. This study advances the understanding of self-healable conductive polymers and opens new avenues for their application in wearable technology.

2.
Small ; : e2400491, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38456574

RESUMEN

Multiresponsive materials with reversible and durable characteristics are indispensable because of their promising applications in environmental change detections. To fabricate multiresponsive materials in mass production, however, complex reactions and impractical situations are often involved. Herein, a dual responsive (light and pH) spiropyran-based smart sensor fabricated by a simple layer-by-layer (LbL) assembly process from upcycled thermoplastic polyester elastomer (TPEE) materials derived from recycled polyethylene terephthalate (r-PET) is proposed. Positively charged chitosan solutions and negatively charged merocyanine-COOH (MC-COOH) solutions are employed in the LbL assembly technique, forming the chitosan-spiropyran deposited TPEE (TPEE-CH-SP) film. Upon UV irradiation, the spiropyran-COOH (SP-COOH) molecules on the TPEE-CH-SP film undergo the ring-opening isomerization, along with an apparent color change from colorless to purple, to transform into the MC-COOH molecules. By further exposing the TPEE-CH-MC film to hydrogen chloride (HCl) and nitric acid (HNO3 ) vapors, the MC-COOH molecules can be transformed into protonated merocyanine-COOH (MCH-COOH) with the simultaneous color change from purple to yellow.

3.
Appl Opt ; 56(14): 4039-4044, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29047528

RESUMEN

In this paper, we propose a novel wavelength demultiplexer based on metal-insulator-metal plasmonic waveguides with a nanoscale ring resonator. Its transmission characteristics are numerically studied using finite element method (FEM) simulations, and the eigenwavelengths of the ring resonator are theoretically calculated. For the proposed structure, we found that the ratio of the orders of resonant transmittance peaks for two different high-order modes of the ring resonator is close to the ratio of the two communication wavelengths 1310 and 1550 nm. These resonance wavelengths of the demultiplexer are effortlessly tuned by varying the refractive index of the material in the ring resonator and the geometrical parameters of the structure. The results simulated by FEM agree well with those from the resonant theory of the ring resonator. The presented structures will have significant potential applications in highly integrated plasmonic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA