RESUMEN
Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.
How many cell types are there in nature? How do they change during the life cycle? These are two fundamental questions that researchers have been trying to understand in the area of biology. In this study, single-cell mRNA sequencing data were used to profile over 2.6 million individual cells from mice, zebrafish and Drosophila at different life stages, 1.3 million of which were newly collected. The comprehensive datasets allow investigators to construct a cross-species cell landscape that helps to reveal the conservation and diversity of cell taxonomies at genetic and regulatory levels. The resources in this study are assembled into a publicly available website at http://bis.zju.edu.cn/cellatlas/.
Asunto(s)
Análisis de la Célula Individual , Animales , Ratones , Análisis de Secuencia de ARN , Pez Cebra/crecimiento & desarrollo , Drosophila/crecimiento & desarrolloRESUMEN
The photosynthetic mechanism of crop yields in fluctuating light environments in the field remains controversial. To further elucidate this mechanism, we conducted field and simulation experiments using maize (Zea mays) plants. Increased planting density enhanced the light fluctuation frequency and reduced the duration of daily high light, as well as the light-saturated photosynthetic rate, biomass, and yield per plant. Further analysis confirmed a highly significant positive correlation between biomass and yield per plant and the duration of photosynthesis related to daily high light. The simulation experiment indicated that the light-saturated photosynthetic rate of maize leaves decreased gradually and considerably when shortening the daily duration of high light. Under an identical duration of high light exposure, increasing the fluctuation frequency decreased the light-saturated photosynthetic rate slightly. Proteomic data also demonstrated that photosynthesis was mainly affected by the duration of high light and not by the light fluctuation frequency. Consequently, the current study proposes that an appropriate duration of daily high light under fluctuating light environments is the key factor for greatly improving photosynthesis. This is a promising mechanism by which the photosynthetic productivity and yield of maize can be enhanced under complex light environments in the field.
Asunto(s)
Proteómica , Zea mays , Fotosíntesis , Biomasa , Hojas de la Planta , LuzRESUMEN
Due to the strong selectivity and permeability of tumor tissue, anti-cancer peptide-drug conjugates (PDCs) can accumulate high concentration of toxic payloads at the target, effectively killing tumor cells. This approach holds great promise for tumor-targeted treatment. In our previous study, we identified the optimal peptide P1 (NPNWGRSWYNQRFK) targeting HER2 from pertuzumab, a monoclonal antibody that blocks the HER2 signaling pathway. Here, a series of PDCs were constructed through connecting P1 and CPT with different linkers. Among these, Z8 emerged as the optimal compound, demonstrating good antitumor activity and targeting ability in biological activity tests. Z8 exhibited IC50 values of 1.04 ± 0.24 µM and 1.91 ± 0.71 µM against HER2-positive SK-BR-3 and NCI-N87 cells, respectively. Moreover, superior antitumor activity and higher biosafety of Z8 were observed compared to the positive control CPT in vivo, suggesting a novel idea for the construction of PDCs.
Asunto(s)
Antineoplásicos , Camptotecina , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Péptidos , Receptor ErbB-2 , Humanos , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Camptotecina/farmacología , Camptotecina/química , Relación Estructura-Actividad , Animales , Proliferación Celular/efectos de los fármacos , Péptidos/química , Péptidos/farmacología , Péptidos/síntesis química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Ratones , Descubrimiento de Drogas , Línea Celular Tumoral , Femenino , Ratones Endogámicos BALB C , Ratones DesnudosRESUMEN
The prevalence of toxic element thallium (Tl) in soils is of increasing concern as a hidden hazard in agricultural systems and food chains. In the present work, pure biochar (as a comparison) and jacobsite (MnFe2O4)-biochar composite (MFBC) were evaluated for their immobilization effects in Tl-polluted agricultural soils (Tl: â¼10 mg/kg). Overall, MFBC exhibited an efficient effect on Tl immobilization, and the effect was strengthened with the increase of amendment ratio. After being amended by MFBC for 15 and 30 days, the labile fraction of Tl in soil decreased from 1.55 to 0.97 mg/kg, and from 1.51 to 0.88 mg/kg, respectively. In addition, pH (3.05) of the highly acidic soil increased to a maximum of 3.97 after the immobilization process. Since the weak acid extractable and oxidizable Tl were the preponderantly mitigated fractions and displayed a negative correlation with pH, it can be inferred that pH may serve as one of the most critical factors in regulating the Tl immobilization process in MFBC-amended acidic soils. This study indicated a great potential of jacobsite-biochar amendment in stabilization and immobilization of Tl in highly acidic and Tl-polluted agricultural soils; and it would bring considerable environmental benefit to these Tl-contaminated sites whose occurrence has significantly increased in recent decades near the pyrite or other sulfide ore mining and smelting area elsewhere.
Asunto(s)
Contaminantes del Suelo , Talio , Talio/análisis , Suelo , Sulfuros , Contaminantes del Suelo/análisisRESUMEN
Rare earth elements have garnered increasing attention due to their strategic properties and chronic toxicity to humans. To better understand the content, migration, and ecological risk of rare earth elements in a 180 cm depth sediment profile downstream of a decommissioned uranium hydrometallurgical site in South China, X-ray powder diffraction (XRD) and High-resolution transmission electron microscope (HRTEM) were additionally used to quantify and clarify the mineral composition features. The results showed a high enrichment level of total rare earth elements in the sediment depth profile (range: 129.6-1264.3 mg/kg); the concentration variation of light rare earth elements was more dependent on depth than heavy rare earth elements. Overall, there was an obvious enrichment trend of light rare earth elements relative to heavy rare earth elements and negative anomalies of Ce and Eu. The fractionation and anomaly of rare earth elements in sediments were closely related to the formation and weathering of iron-bearing minerals and clay minerals, as confirmed by the correlation analysis of rare earth elements with Fe (r2 = 0.77-0.90) and Al (r2 = 0.50-0.71). The mineralogical composition of sediments mainly consisted of quartz, feldspar, magnetite, goethite, and hematite. Pollution assessment based on the potential ecological risk index, pollution load index (PLI), enrichment factor, and geological accumulation index (Igeo) showed that almost all the sediments had varying degrees of pollution and a high level of ecological risk. This study implied that continued environmental supervision and management are needed to secure the ecological health in terms of rare earth elements enrichment around a decommissioned uranium hydrometallurgical site. The findings may provide valuable insights for other uranium mining and hydrometallurgical areas globally.
Asunto(s)
Sedimentos Geológicos , Metales de Tierras Raras , Uranio , Metales de Tierras Raras/análisis , China , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Uranio/análisis , Difracción de Rayos XRESUMEN
Muscle mass development depends on increased protein synthesis and reduced muscle protein degradation. Muscle ring-finger protein-1 (MuRF1) plays a key role in controlling muscle atrophy. Its E3 ubiquitin ligase activity recognizes and degrades skeletal muscle proteins through the ubiquitin-proteasome system. The loss of Murf1, which encodes MuRF1, in mice leads to the accumulation of skeletal muscle proteins and alleviation of muscle atrophy. However, the function of Murf1 in agricultural animals remains unclear. Herein, we bred F1 generation Murf1+/- and F2 generation Murf1-/- Duroc pigs from F0 Murf1-/- pigs to investigate the effect of Murf1 knockout on skeletal muscle development. We found that the Murf1+/- pigs retained normal levels of muscle growth and reproduction, and their percentage of lean meat increased by 6% compared to that of the wild type (WT) pigs. Furthermore, the meat color, pH, water-holding capacity, and tenderness of the Murf1+/- pigs were similar to those of the WT pigs. The drip loss rate and intramuscular fat decreased slightly in the Murf1+/- pigs. However, the cross-sectional area of the myofibers in the longissimus dorsi increased in the adult Murf1+/- pigs. The skeletal muscle proteins MYBPC3 and actin, which are targeted by MuRF1, accumulated in the Murf1+/- and Murf1-/- pigs. Our findings show that inhibiting muscle protein degradation in MuRF1-deficient Duroc pigs increases the size of their myofibers and their percentage of lean meat without influencing their growth or pork quality. Our study demonstrates that Murf1 is a target gene for promoting skeletal muscle hypertrophy in pig breeding.
Asunto(s)
Músculo Esquelético , Atrofia Muscular , Animales , Ratones , Porcinos , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/farmacología , Hipertrofia/genética , Hipertrofia/metabolismoRESUMEN
Interfacial engineering is a critical pathway for modulating the self-assembled nanostructures of block copolymers (BCPs) during solvent exchange. Herein, we demonstrated the generation of different stacked lamellae of polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) nanostructures during solvent exchange by using phosphotungstic acid (PTA) or PTA/NaCl aqueous solution as the nonsolvent. The participation of PTA in the confined microphase separation of PS-b-P2VP in droplets increases the volume fraction of P2VP and decreases the tension at the oil/water interface. Moreover, the addition of NaCl to the PTA solution can further increase the surface coverage of P2VP/PTA on droplets. All factors impact the morphology of assembled BCP nanostructures. In the presence of PTA, ellipsoidal particles composed of alternatively stacked lamellae of PS and P2VP were formed (named BP), whereas, in the coexistence of PTA and NaCl, they changed to stacked disks with PS-core-P2VP-shell (called BPN). The different structures of assembled particles induce their different stabilities in solvents and different dissociation conditions as well. The dissociation of BP particles was easy because PS chains were only entangled together which can be swollen in toluene or chloroform. However, the dissociation of BPN was hard, requiring an organic base in hot ethanol. The structural difference in BP and BPN particles further extended to their dissociated disks, which makes the cargo (like R6G) loaded on these disks to show a different stability in acetone. This study demonstrated that a subtle structural change can greatly affect their properties.
RESUMEN
The terminal differentiation of B cells into plasma cells is central to the generation of protective, long-lived humoral immune responses. In mammals, interleukin-2 (IL-2) has been shown to play a role in B cell proliferation and differentiation. However, it remains unclear whether fish IL-2 is involved in B cell proliferation and differentiation. To this end, we investigated the regulatory role of IL-2 in B cell proliferation and differentiation in large yellow croaker (Larimichthys crocea). We found that L. crocea IL-2 (LcIL-2) significantly increased IgM+ B cells proliferation both in vivo and in vitro and facilitated IgM+ B cells differentiation into plasma cells. Furthermore, LcIL-2 increased the production of specific antibodies after immunization with the Vibrio alginolyticus subunit vaccine, recombinant dihydrolipoamide dehydrogenase (rDLD); simultaneous administration of LcIL-2 and rDLD prior to challenge with Vibrio parahaemolyticus or V. alginolyticus significantly increased relative percent survival. Mechanistically, LcIL-2 promoted B cell proliferation and regulated B cell differentiation by triggering the JAK-STAT5 signaling pathway. Collectively, our results demonstrated that LcIL-2 improved B cell proliferation and specific antibody production via the conserved JAK-STAT5 signaling pathway in large yellow croaker, providing valuable insights into the mechanisms underlying the IL-2-mediated regulation of the humoral immune response in fish.
Asunto(s)
Proteínas de Peces , Interleucina-2 , Perciformes , Animales , Enfermedades de los Peces , Inmunidad Humoral , Inmunoglobulina M/metabolismo , Interleucina-2/genética , Mamíferos/metabolismo , Transducción de Señal , Factor de Transcripción STAT5RESUMEN
BACKGROUND: We identified a homologue of IL-21R (LcIL-21R) in large yellow croaker (Larimichthys crocea, Lc). Our investigation focused on understanding the molecular structural features and immune function of LcIL-21R. METHODS: We cloned the LcIL-21R gene from the genome of Larimichthys crocea by RTâPCR, and the molecular and structural characteristics of LcIL-21R were analyzed by a series of protein analysis tools. We used real-time PCR to investigate the tissue distribution of LcIL-21R, and LcIL-21R gene expression regulation was also measured in head kidney leukocytes under trivalent bacterial vaccine or poly (I:C) stimulation. RESULTS: The open reading frame (ORF) of the LcIL-21R gene is 1629 bp long and encodes a precursor protein of 542 amino acids (aa), with a 23-aa signal peptide and a 519-aa mature peptide containing four putative N-glycosylation sites. LcIL-21R has two fibronectin type III (FNIII)-like domains (D1 and D2), a transmembrane domain, and a cytoplasmic region. A conserved WSXWS motif was also found in the D2 domain. The predicted structure of the extracellular region of LcIL-21R (LcIL-21R-Ex) is highly similar to that of human IL-21R. LcIL-21R was constitutively expressed in all tissues examined, and LcIL-21R mRNA levels were increased in the head kidney and spleen upon inactivated trivalent bacterial vaccine or poly(I:C) stimulation. CONCLUSIONS: Our results suggest that LcIL-21R shares structural and functional properties with IL-21Rs found in other vertebrates, indicating its potential involvement in the IL-21-mediated immune response to pathogenic infections. These findings contribute to our understanding of the evolutionary conservation of IL-21 signaling and its role in the immune system.
Asunto(s)
Perciformes , Receptores de Interleucina-21 , Animales , Humanos , Receptores de Interleucina-21/genética , Receptores de Interleucina-21/metabolismo , Secuencia de Aminoácidos , Regulación de la Expresión Génica , Perciformes/metabolismo , Vacunas Bacterianas , Proteínas de Peces/metabolismo , FilogeniaRESUMEN
BACKGROUND: Although the accumulation of whole-genome sequencing (WGS) data has accelerated the identification of mutations underlying complex traits, its impact on the accuracy of genomic predictions is limited. Reliable genotyping data and pre-selected beneficial loci can be used to improve prediction accuracy. Previously, we reported a low-coverage sequencing genotyping method that yielded 11.3 million highly accurate single-nucleotide polymorphisms (SNPs) in pigs. Here, we introduce a method termed selective linkage disequilibrium pruning (SLDP), which refines the set of SNPs that show a large gain during prediction of complex traits using whole-genome SNP data. RESULTS: We used the SLDP method to identify and select markers among millions of SNPs based on genome-wide association study (GWAS) prior information. We evaluated the performance of SLDP with respect to three real traits and six simulated traits with varying genetic architectures using two representative models (genomic best linear unbiased prediction and BayesR) on samples from 3579 Duroc boars. SLDP was determined by testing 180 combinations of two core parameters (GWAS P-value thresholds and linkage disequilibrium r2). The parameters for each trait were optimized in the training population by five fold cross-validation and then tested in the validation population. Similar to previous GWAS prior-based methods, the performance of SLDP was mainly affected by the genetic architecture of the traits analyzed. Specifically, SLDP performed better for traits controlled by major quantitative trait loci (QTL) or a small number of quantitative trait nucleotides (QTN). Compared with two commercial SNP chips, genotyping-by-sequencing data, and an unselected whole-genome SNP panel, the SLDP strategy led to significant improvements in prediction accuracy, which ranged from 0.84 to 3.22% for real traits controlled by major or moderate QTL and from 1.23 to 11.47% for simulated traits controlled by a small number of QTN. CONCLUSIONS: The SLDP marker selection method can be incorporated into mainstream prediction models to yield accuracy improvements for traits with a relatively simple genetic architecture, however, it has no significant advantage for traits not controlled by major QTL. The main factors that affect its performance are the genetic architecture of traits and the reliability of GWAS prior information. Our findings can facilitate the application of WGS-based genomic selection.
Asunto(s)
Estudio de Asociación del Genoma Completo , Genómica , Animales , Porcinos/genética , Masculino , Desequilibrio de Ligamiento , Genotipo , Estudio de Asociación del Genoma Completo/métodos , Reproducibilidad de los Resultados , Genómica/métodos , Fenotipo , Sitios de Carácter Cuantitativo , Polimorfismo de Nucleótido SimpleRESUMEN
The effective removal of radioactive strontium (especially 90Sr) from nuclear wastewater is crucial to environmental safety. Nevertheless, materials with excellent selectivity in Sr removal remain a challenge since the similarity with alkaline earth metal ions in the liquid phase. In this work, a novel titanium phosphate (TiP) aerogel was investigated for Sr(II) removal from the radioactive wastewater based on the sol-gel method and supercritical drying technique. The TiP aerogel has amorphous, three-dimensional and mesoporous structures with abundant phosphate groups, which was confirmed by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), atomic force microscope (AFM) and Fourier transform infrared spectroscopy (FT-IR). The adsorbent exhibited high efficiency and selectivity for the removal of Sr(II) with an extensive distribution coefficient up to 4740.03 mL/g. The adsorption equilibrium reached within 10 min and the maximum adsorption capacity was 373.6 mg/g at pH 5. And the kinetics and thermodynamics data fitted well with the pseudo-second-order model and Langmuir model respectively. It can be attributed to the rapid trapping and slow intraparticle diffusion of Sr(II) inside the mesoporous channels of the TiP aerogel. Furthermore, TiP aerogel exhibited over 80% removal for 50 mg/L Sr2+ in real water systems (seawater, lake water and tap water). X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy revealed that strong ionic bonding formed during Sr(II) adsorption with the phosphate group on TiP aerogel. These results indicated that TiP aerogel is a promising high-capacity adsorbent for the effective and selective capture of Sr(II) from radioactive wastewater.
Asunto(s)
Estroncio , Contaminantes Químicos del Agua , Estroncio/análisis , Aguas Residuales/química , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Contaminantes Químicos del Agua/química , Agua/química , Cinética , Fosfatos , Concentración de Iones de HidrógenoRESUMEN
Heat stress is an important factor that affects food intake. Previous studies have proven that heat stress can regulate feeding behavior through a homeostasis pathway and decrease appetite in animals and humans. However, the relationship between heat stress and midbrain reward regulation has not been reported. Corticotropin-releasing factor receptor type 2 (CRFR2) is the receptor of corticotropin-releasing factor (CRF), which is the key hypothalamic pituitary adrenal axis (HPA axis) regulating the stress response. In our study, the effects of heat stress on hedonic feeding behavior were investigated. The results showed that heat stress can affect hedonic feeding behavior and decrease high-fat diet (HFD) intake. Furthermore, the mRNA expression of tyrosine hydroxylase in the VTA decreased under heat stress compared with that at 25 °C. Meanwhile, intraventricular injection of a CRFR2 antagonist reversed the decrease in HFD intake and conditional place preference (CPP) caused by heat stress. In conclusion, CRFR2 in the midbrain plays an important role in the decrease in hedonic feeding behavior caused by heat stress.
Asunto(s)
Conducta Alimentaria , Respuesta al Choque Térmico , Mesencéfalo , Receptores de Hormona Liberadora de Corticotropina , Animales , Hormona Liberadora de Corticotropina/genética , Hormona Liberadora de Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Mesencéfalo/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/metabolismoRESUMEN
BACKGROUND: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder, mainly characterized by the development of renal cysts, as well as various extrarenal manifestations. Previous studies have shown that ADPKD is related to bronchiectasis, while its pathogenic mechanism is unclear. In previous studies, we have generated the PKD1+/- pigs to simulate the progression of cyst formation and physiological alterations similar to those seen in ADPKD patients. METHODS: Phenotypic changes to airway epithelial cell and mesenchymal cell in PKD1+/- pigs were assessed by histological analysis. The molecular mechanisms driving these processes were investigated by using PKD1+/- pig lungs, human mesenchymal cells, and generating PKD1 deficient human epithelial cells. RESULTS: We identified bronchiectasis in PKD1+/- pigs, which is consistent with the clinical symptoms in ADPKD patients. The deficiency of PKD1 suppressed E-cadherin expression in the airway epithelial barrier, which aggravated invasion and leaded to a perpetuated inflammatory response. During this process, extracellular matrix (ECM) components were altered, which contributed to airway smooth muscle cell phenotype switch from a contractile phenotype to a proliferative phenotype. The effects on smooth muscle cells resulted in airway remodeling and establishment of bronchiectasis. CONCLUSION: To our knowledge, the PKD1+/- pig provides the first model recapitulating the pathogenesis of bronchiectasis in ADPKD. The role of PKD1 in airway epithelial suggests a potential target for development of new strategies for the diagnosis and treatment of bronchiectasis.
Asunto(s)
Bronquiectasia , Riñón Poliquístico Autosómico Dominante , Humanos , Porcinos , Animales , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Bronquiectasia/genética , Células Epiteliales/metabolismo , Pulmón/metabolismo , MutaciónRESUMEN
The generation of inverse micellar nanostructures, especially those with open channels, using commercially available diblock copolymers (BCP), is vital for their wide applications in drug delivery and catalyst templating. However, the rigid requirements for forming inverse morphologies, such as the highly asymmetric molecular structures, the semicrystalline motifs, and concentrated solutions of diblock copolymers, represent obstacles to the development of successful strategies. In this study, the inverse polystyrene-block-poly(2-vinylpyridine) (PS30K-b-P2VP8.5K) micelles, i.e., the hexasomes with p6mm lattice, were generated through a modified solvent exchange via adding d-tartaric acid (d-TA) in the nonsolvent. Various intermediate morphologies have been identified with the change of d-TA concentration. Interestingly, in the high d-TA concentration (â¼20 mg/mL), the hexasomes with close-packed hoops changed to mesoporous spheres with regularly packed perpendicular cylindrical channels (VD-TA: VBCP 6:100), and further to the mesoporous spheres with gyri-like open pores (VD-TA: VBCP > 15:100) with the increasing acidity in the mixed solvent. This study presents a simple and economical pathway for fabricating PS30K-b-P2VP8.5K hexasomes and first demonstrates these hexasomes can be modified to the morphology with open channels that will benefit their further applications.
RESUMEN
BACKGROUND: Solid pseudopapillary neoplasms (SPNs) of the pancreas are rare with low-grade malignancy and unclarified clinicopathological features. This study aimed to examine their characteristics and re-evaluate current treatments. METHODS: Databases from three sources were screened for patients with SPNs. We compared the perioperative variables, clinical data, overall survival (OS), and prognostic factors for recurrence among the three corresponding cohorts. RESULTS: We identified 286 patients diagnosed with SPNs between 1988 and 2020. Patients were mostly women (81%; median age: 38 years), and peak incidence was observed in women of 20-29 years of age. SPNs had a peak incidence in Asian men at 50-59 years of age (p = 0.002) and a delayed peak incidence in Asian women at 30-39 years of age (p < 0.001). Treatment strategies differed significantly across the institutions and included variations in the number of harvested lymph nodes and rates of vascular resection. Lymph node positivity was the only predictor of postoperative recurrence (odds ratio, 2.2; 95% confidence interval, 1.38-2.99; p = 0.007). Higher rates of lymphovascular invasion (p = 0.02), perineural invasion (p < 0.001), and R1 margin involvement (p < 0.001), as seen in one institution, did not result in poorer long-term survival in terms of the overall (p = 0.43), SPN-specific (p = 0.69), and recurrence-free survivals (p = 0.067). CONCLUSIONS: In contrast to previous findings that SPNs are prevalent in young women, a racial predilection for middle-aged Asian men and a delayed female peak incidence were noted. Parenchyma-preserving pancreatectomy may be an acceptable treatment. Non-radical surgery may be appropriate in patients with multiple comorbidities.
Asunto(s)
Carcinoma Papilar , Neoplasias Pancreáticas , Persona de Mediana Edad , Masculino , Femenino , Humanos , Adulto , Neoplasias Pancreáticas/patología , Carcinoma Papilar/cirugía , Carcinoma Papilar/patología , Estudios Retrospectivos , Pancreatectomía , Páncreas/cirugía , Páncreas/patología , PronósticoRESUMEN
A leaf structure with high porosity is beneficial for lateral CO2 diffusion inside the leaves. However, the leaf structure of maize is compact, and it has long been considered that lateral CO2 diffusion is restricted. Moreover, lateral CO2 diffusion is closely related to CO2 pressure differences (ΔCO2). Therefore, we speculated that enlarging the ΔCO2 between the adjacent regions inside maize leaves may result in lateral diffusion when the diffusion resistance is kept constant. Thus, the leaf structure and gas exchange of maize (C4), cotton (C3), and other species were explored. The results showed that maize and sorghum leaves had a lower mesophyll porosity than cotton and cucumber leaves. Similar to cotton, the local photosynthetic induction resulted in an increase in the ΔCO2 between the local illuminated and the adjacent unilluminated regions, which significantly reduced the respiration rate of the adjacent unilluminated region. Further analysis showed that when the adjacent region in the maize leaves was maintained under a steady high light, the photosynthesis induction in the local regions not only gradually reduced the ΔCO2 between them but also progressively increased the steady photosynthetic rate in the adjacent region. Under field conditions, the ΔCO2, respiration, and photosynthetic rate of the adjacent region were also markedly changed by fluctuating light in local regions in the maize leaves. Consequently, we proposed that enlarging the ΔCO2 between the adjacent regions inside the maize leaves results in the lateral CO2 diffusion and supports photosynthesis in adjacent regions to a certain extent under fluctuating light.
Asunto(s)
Dióxido de Carbono , Zea mays , Dióxido de Carbono/farmacología , Luz , Fotosíntesis , Hojas de la Planta , DifusiónRESUMEN
Low light conditions not only induce leaf senescence, but also photosynthetic acclimation. This study aimed to determine whether plants exhibit photosynthetic acclimation during low-light-induced leaf senescence. The influences of shading on leaf senescence and photosynthetic acclimation were explored in post-anthesis maize plants. The results showed that whole shading (WS) of maize plants accelerated leaf senescence, whereas partial shading (PS) slowed leaf senescence. WS led to larger decreases in the photosynthetic rate (Pn) and stomatal conductance (Gs) compared to those of the PS treatment. Interestingly, chlorophyll a fluorescence (ChlF) demonstrated that the absorption flux (ABS/CSo) and trapped energy flux (TRo/CSo) per cross section in leaves remained relatively stable under WS, whereas significant decreases in the active PSII reaction centers (RC/CSo) resulted in considerable increases in absorption (ABS/RC) and trapped energy flux (TRo/RC) per reaction center. ABS/CSo, TRo/CSo, ABS/RC, and TRo/RC increased markedly under PS, whereas there were slight decreases in RC/CSo and electron transport activity. These results suggest that the PS treatment resulted in obvious improvements in the absorption and capture of light energy in shaded leaves. Further analysis demonstrated that both the WS and PS treatments resulted in a greater decrease in the activity of Rubisco compared to that of phosphoenolpyruvate carboxylase (PEPC). Moreover, PEPC activity in PS was maintained at a high level. Consequently, the current study proposed that the improvement of the absorption and capture of light energy and the maintenance of PEPC activity of mesophyll cells were due to photosynthetic acclimation of low-light-induced leaf senescence in maize plants. In addition, the rate of senescence of vascular bundle cells in maize leaves exceeded that of mesophyll cells under low light, showing obvious tissue specificity.
Asunto(s)
Fotosíntesis , Zea mays , Aclimatación , Clorofila , Clorofila A , Hojas de la Planta , Senescencia de la PlantaRESUMEN
To copy with highly heterogeneous light environment, plants can regulate photosynthesis locally and systemically, thus, maximizing the photosynthesis of individual plants. Therefore, we speculated that local weak light may induce the improvement of photosynthesis in adjacent illuminated leaves in plants. In order to test this hypothesis, maize seedlings were partially shaded, and gas exchange, chlorophyll a fluorescence and biochemical analysis were carefully assessed. It was shown that local shading exacerbated the declines in the photosynthetic rates, chlorophyll contents, electron transport and carbon assimilation-related enzyme activities in shaded leaves as plants growth progressed. While, the decreases of these parameters in adjacent illuminated leaves of shaded plants were considerably alleviated compared to the corresponding leaves of control plants. Obviously, the photosynthesis in adjacent illuminated leaves in shaded plants was improved by local shading, and the improvement in adjacent lower leaves was larger than that in adjacent upper ones. As growth progressed, local shading induced higher abscisic acid contents in shaded leaves, but it alleviated the increase in the abscisic acid contents in adjacent leaves in shaded plants. Moreover, the difference in sugar content between shaded leaves and adjacent illuminated ones was gradually increased. Consequently, local weak light suppressed the photosynthesis in shaded leaves, while it markedly improved the photosynthesis of adjacent illuminated ones. Sugar gradient between shaded leaves and adjacent illuminated ones might play a key role in photosynthetic regulation of adjacent illuminated leaves.
Asunto(s)
Plantones , Zea mays , Clorofila , Clorofila A , Luz , Fotosíntesis , Hojas de la PlantaRESUMEN
As an effective separation tool, free-flow electrophoresis has not been used for purification of low-abundance protein in complex sample matrix. Herein, lysozyme in complex egg white matrix was chosen as the model protein for demonstrating the purification of low-content peptide via an FFE coupled with gel fitration chromatography (GFC). The crude lysozyme in egg while was first separated via free-flow zone electrophoresis (FFZE). After that, the fractions with lysozyme activity were condensed via lyophilization. Thereafter, the condensed fractions were further purified via a GFC of Sephadex G50. In all of the experiments, a special poly(acrylamide- co-acrylic acid) (P(AM-co-AA)) gel electrophoresis and a mass spectrometry were used for identification of lysozyme. The conditions of FFZE were optimized as follows: 130 µL/min sample flow rate, 4.9 mL/min background buffer of 20 mM pH 5.5 Tris-Acetic acid, 350 V, and 14 °C as well as 2 mg/mL protein content of crude sample. It was found that the purified lysozyme had the purity of 80% and high activity as compared with its crude sample with only 1.4% content and undetectable activity. The recoveries in the first and second separative steps were 65% and 82%, respectively, and the total recovery was about 53.3%. The reasons of low recovery might be induced by diffusion of lysozyme out off P(AM-co-AA) gel and co-removing of high-abundance egg ovalbumin. All these results indicated FFE could be used as alternative tool for purification of target solute with low abundance.
Asunto(s)
Cromatografía en Gel/métodos , Clara de Huevo/química , Electroforesis/métodos , Muramidasa/aislamiento & purificación , Animales , Antibacterianos/análisis , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Antibacterianos/farmacología , Pollos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Muramidasa/análisis , Muramidasa/química , Muramidasa/farmacologíaRESUMEN
Extensive mining and smelting activities in the Baiyin district have resulted in a serious hazardous elements (HEs) contamination in the soils and overbank sediments. In this study, the concentrations and chemical fractions of HEs were analyzed to evaluate the environmental risks of these HEs in the focus areas. In soils, Zn, Cu, Pb, and Cd exhibited an obvious decline compared to the results in 2012, which confirmed that the treatments of the contaminated soils by the government have played a very important role in the remediation of the soils. However, Zn, Cu, and Pb still exceeded the background values, and the study areas were still extremely contaminated with Cd. The spatial distribution of HEs showed that the contaminated areas were mainly focused around the mining and smelting regions and the sewage irrigation regions. Sequential extraction showed that Zn was mainly present as a residue fraction, while the percentages of unstable fractions increased in the sewage irrigation region samples. As for Cd, the bioavailable fractions were extremely high (over 90%) and the ecological risk was much higher than Zn. In the case of the sediments, the concentrations of HEs were extremely high. However, few researches have investigated HEs contamination in the sediments from the study area. With changes in climate and environmental conditions, HEs in sediments will easily release and influence the groundwater and the irrigation water. Furthermore, the available fractions of Zn and Cd were over 80%, which suggests high bioavailability and mobility in sediments. HEs pollution in sediments should receive more attention compared to that in soils.