RESUMEN
The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.
Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Animales , Aorta/patología , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miofibrillas/metabolismoRESUMEN
Lamin A/C (LMNA) is one of the most frequently mutated genes associated with dilated cardiomyopathy (DCM). DCM related to mutations in LMNA is a common inherited cardiomyopathy that is associated with systolic dysfunction and cardiac arrhythmias. Here we modelled the LMNA-related DCM in vitro using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). Electrophysiological studies showed that the mutant iPSC-CMs displayed aberrant calcium homeostasis that led to arrhythmias at the single-cell level. Mechanistically, we show that the platelet-derived growth factor (PDGF) signalling pathway is activated in mutant iPSC-CMs compared to isogenic control iPSC-CMs. Conversely, pharmacological and molecular inhibition of the PDGF signalling pathway ameliorated the arrhythmic phenotypes of mutant iPSC-CMs in vitro. Taken together, our findings suggest that the activation of the PDGF pathway contributes to the pathogenesis of LMNA-related DCM and point to PDGF receptor-ß (PDGFRB) as a potential therapeutic target.
Asunto(s)
Cardiomiopatía Dilatada/genética , Lamina Tipo A/genética , Mutación , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calcio/metabolismo , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina/genética , Haploinsuficiencia/genética , Homeostasis , Humanos , Técnicas In Vitro , Células Madre Pluripotentes Inducidas/patología , Modelos Biológicos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Degradación de ARNm Mediada por Codón sin Sentido , ARN Mensajero/análisis , ARN Mensajero/genética , Análisis de la Célula IndividualRESUMEN
Understanding the behavior and potential toxicity of copper nanoparticles (nano-Cu) in the aquatic environment is a primary way to assess their environmental risks. In this study, RNA-seq was performed on three different tissues (gills, intestines, and muscles) of zebrafish exposed to nano-Cu, to explore the potential toxic mechanism of nano-Cu on zebrafish. The results indicated that the toxic mechanism of nano-Cu on zebrafish was tissue-specific. Nano-Cu enables the CB1 receptor of the presynaptic membrane of gill cells to affect short-term synaptic plasticity or long-term synaptic changes (ECB-LTD) through DSI and DSE, causing dysfunction of intercellular signal transmission. Imbalance of de novo synthesis of UMP in intestinal cells and its transformation to UDP, UTP, uridine, and uracil, resulted in many functions involved in the pyrimidine metabolic pathway being blocked. Meanwhile, the toxicity of nano-Cu caused abnormal expression of RAD51 gene in muscle cells, which affects the repair of damaged DNA through Fanconi anemia and homologous recombination pathway, thus causing cell cycle disorder. These results provide insights for us to better understand the differences in toxicity of nano-Cu on zebrafish tissues and are helpful for a comprehensive assessment of nano-Cu's effects on aquatic organisms.
Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Cobre/toxicidad , Pez Cebra/metabolismo , Nanopartículas/toxicidad , Ciclo Celular , Contaminantes Químicos del Agua/toxicidadRESUMEN
Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium 'Candidatus Liberibacter asiaticus' (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. 'Wanjincheng' orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symptom expression via suppressing host immunity responses. SDE4405 interacts with the ATG8-family of proteins (ATG8s), and their interactions activate autophagy in Nicotiana benthamiana. The occurrence of autophagy is also significantly enhanced in SDE4405-transgenic citrus plants. Interrupting NbATG8s-SDE4405 interaction by silencing of NbATG8c reduces Pseudomonas syringae pv. tomato strain DC3000ΔhopQ1-1 (Pst DC3000ΔhopQ1-1) proliferation in N. benthamiana, and transient overexpression of CsATG8c and SDE4405 in citrus promotes Xanthomonas citri subsp. citri (Xcc) multiplication, suggesting that SDE4405-ATG8s interaction negatively regulates plant defense. These results demonstrate the role of the CLas effector protein in manipulating autophagy, and provide new molecular insights into the interaction between CLas and citrus hosts.
Asunto(s)
Infecciones Bacterianas , Citrus , Hemípteros , Rhizobiaceae , Animales , Rhizobiaceae/genética , Rhizobiaceae/metabolismo , Liberibacter/genética , Plantas Modificadas Genéticamente/genética , Citrus/genética , Enfermedades de las Plantas/microbiología , Hemípteros/fisiologíaRESUMEN
As microplastic pollution has become an emerging environmental issue of global concern, microplastics in aquaculture have become a research hotspot. For environmental safety, economic efficiency and food safety considerations, a comprehensive understanding of microplastic pollution in aquaculture is necessary. This review outlines an overview of sources and effects of microplastics in aquaculture. External environmental inputs and aquaculture processes are sources of microplastics in aquaculture. Microplastics may release harmful additives and adsorb pollutants in aquaculture environment, cause deterioration of aquaculture environment, as well as cause toxicological effects, affect the behavior, growth and reproduction of aquaculture products, ultimately reducing the economic benefits of aquaculture. Microplastics entering the human body through aquaculture products also pose potential health risks at multiple levels. Microplastic pollution removal strategies used in aquaculture in various countries are also reviewed. Ecological interception and purification are considered to be effective methods. In addition, strengthening aquaculture management and improving fishing gear and packaging are also currently feasible solutions. As proactive measures, new portable microplastic monitoring system and remote sensing technology are considered to have broad application prospects. And it was encouraged to comprehensively strengthen the supervision of microplastic pollution in aquaculture through talent exchange and strengthening the construction of laws and regulations.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminación Ambiental/análisis , Acuicultura , Monitoreo del Ambiente/métodos , EcosistemaRESUMEN
It is impossible to overlook the effects of microplastics on aquatic life as they continuously accumulate in aquatic environments. Aquatic crustaceans, as both predator and prey, play an important role in the food web and energy transmission. It is of great practical significance to pay attention to the toxic effects of microplastics on aquatic crustaceans. This review finds that most studies have shown that microplastics negatively affect the life history, behaviors and physiological functions of aquatic crustaceans under experimental conditions. The effects of microplastics of different sizes, shapes or types on aquatic crustaceans are different. Generally, smaller microplastics have more negative effects on aquatic crustaceans. Irregular microplastics have more negative effects on aquatic crustaceans than regular microplastics. When microplastics co-exist with other contaminants, they have a greater negative impact on aquatic crustaceans than single contaminants. This review contributes to rapidly understanding the effects of microplastics on aquatic crustaceans, providing a basic framework for the ecological threat of microplastics to aquatic crustaceans.
Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Cadena Alimentaria , Crustáceos , Ecosistema , Organismos AcuáticosRESUMEN
An all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and CsCu2I3, has attracted attention for their good photophysical characteristics recently. Successive works had reported their application potential in light-emitting devices. However, there is no report for CsCu2I3 in X-ray scintillation detectors so far. We notice that CsCu2I3 may be advantageous in such an application due to the one-dimensional crystal structure, the congruent-melting feature, and the high spectral matching to some photosensors. In this work, we explore the scintillation properties and imaging application of CsCu2I3 in X-ray scintillator detector. The oriented structure is designed to enhance the imaging performance of a CsCu2I3 detector. Close-space sublimation process and nanoscale seed screening strategy are employed to realize this design by producing a large-area (25 cm2) CsCu2I3 thick film layer with the oriented nanorod structure. This CsCu2I3 detector eventually achieves a high spatial resolution of 7.5 lp mm-1 in X-ray imaging.
RESUMEN
Fluorescent indicators are used widely to visualize calcium dynamics downstream of membrane depolarization or G-protein-coupled receptor activation, but are poorly suited for non-invasive imaging in mammals. Here, we report a bright calcium-modulated bioluminescent indicator named Orange CaMBI (Orange Calcium-modulated Bioluminescent Indicator). Orange CaMBI reports calcium dynamics in single cells and, in the context of a transgenic mouse, reveals calcium oscillations in whole organs in an entirely non-invasive manner.
Asunto(s)
Calcio/química , Proteínas Luminiscentes/química , Imagen Óptica , Compuestos Organometálicos/química , Animales , Mediciones Luminiscentes , Ratones , Ratones TransgénicosRESUMEN
RATIONALE: Activated fibroblasts are the major cell type that secretes excessive extracellular matrix in response to injury, contributing to pathological fibrosis and leading to organ failure. Effective anti-fibrotic therapeutic solutions, however, are not available due to the poorly defined characteristics and unavailability of tissue-specific fibroblasts. Recent advances in single-cell RNA-sequencing fill such gaps of knowledge by enabling delineation of the developmental trajectories and identification of regulatory pathways of tissue-specific fibroblasts among different organs. OBJECTIVE: This study aims to define the transcriptome profiles of tissue-specific fibroblasts using recently reported mouse single-cell RNA-sequencing atlas and to develop a robust chemically defined protocol to derive cardiac fibroblasts (CFs) from human induced pluripotent stem cells for in vitro modeling of cardiac fibrosis and drug screening. METHODS AND RESULTS: By analyzing the single-cell transcriptome profiles of fibroblasts from 10 selected mouse tissues, we identified distinct tissue-specific signature genes, including transcription factors that define the identities of fibroblasts in the heart, lungs, trachea, and bladder. We also determined that CFs in large are of the epicardial lineage. We thus developed a robust chemically defined protocol that generates CFs from human induced pluripotent stem cells. Functional studies confirmed that iPSC-derived CFs preserved a quiescent phenotype and highly resembled primary CFs at the transcriptional, cellular, and functional levels. We demonstrated that this cell-based platform is sensitive to both pro- and anti-fibrosis drugs. Finally, we showed that crosstalk between human induced pluripotent stem cell-derived cardiomyocytes and CFs via the atrial/brain natriuretic peptide-natriuretic peptide receptor-1 pathway is implicated in suppressing fibrogenesis. CONCLUSIONS: This study uncovers unique gene signatures that define tissue-specific identities of fibroblasts. The bona fide quiescent CFs derived from human induced pluripotent stem cells can serve as a faithful in vitro platform to better understand the underlying mechanisms of cardiac fibrosis and to screen anti-fibrotic drugs.
Asunto(s)
Fibroblastos/fisiología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Animales , Antifibrinolíticos/farmacología , Antifibrinolíticos/uso terapéutico , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibrosis/tratamiento farmacológico , Fibrosis/patología , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Miocitos Cardíacos/efectos de los fármacosRESUMEN
AIMS: Diastolic dysfunction (DD) is common among hypertrophic cardiomyopathy (HCM) patients, causing major morbidity and mortality. However, its cellular mechanisms are not fully understood, and presently there is no effective treatment. Patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) hold great potential for investigating the mechanisms underlying DD in HCM and as a platform for drug discovery. METHODS AND RESULTS: In the present study, beating iPSC-CMs were generated from healthy controls and HCM patients with DD. Micropatterned iPSC-CMs from HCM patients showed impaired diastolic function, as evidenced by prolonged relaxation time, decreased relaxation rate, and shortened diastolic sarcomere length. Ratiometric Ca2+ imaging indicated elevated diastolic [Ca2+]i and abnormal Ca2+ handling in HCM iPSC-CMs, which were exacerbated by ß-adrenergic challenge. Combining Ca2+ imaging and traction force microscopy, we observed enhanced myofilament Ca2+ sensitivity (measured as dF/Δ[Ca2+]i) in HCM iPSC-CMs. These results were confirmed with genome-edited isogenic iPSC lines that carry HCM mutations, indicating that cytosolic diastolic Ca2+ overload, slowed [Ca2+]i recycling, and increased myofilament Ca2+ sensitivity, collectively impairing the relaxation of HCM iPSC-CMs. Treatment with partial blockade of Ca2+ or late Na+ current reset diastolic Ca2+ homeostasis, restored diastolic function, and improved long-term survival, suggesting that disturbed Ca2+ signalling is an important cellular pathological mechanism of DD. Further investigation showed increased expression of L-type Ca2+channel (LTCC) and transient receptor potential cation channels (TRPC) in HCM iPSC-CMs compared with control iPSC-CMs, which likely contributed to diastolic [Ca2+]i overload. CONCLUSION: In summary, this study recapitulated DD in HCM at the single-cell level, and revealed novel cellular mechanisms and potential therapeutic targets of DD using iPSC-CMs.
Asunto(s)
Cardiomiopatía Hipertrófica/genética , Insuficiencia Cardíaca Diastólica/fisiopatología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica/tratamiento farmacológico , Cardiomiopatía Hipertrófica/fisiopatología , Proteínas Portadoras/genética , Estudios de Casos y Controles , Diferenciación Celular , Insuficiencia Cardíaca Diastólica/tratamiento farmacológico , Insuficiencia Cardíaca Diastólica/mortalidad , Humanos , Mutación , Cadenas Pesadas de Miosina/genética , Fenotipo , Sarcómeros/fisiología , Troponina T/genéticaRESUMEN
AIMS: The Brugada syndrome (BrS) is an inherited cardiac disorder predisposing to ventricular arrhythmias. Despite considerable efforts, its genetic basis and cellular mechanisms remain largely unknown. The objective of this study was to identify a new susceptibility gene for BrS through familial investigation. METHODS AND RESULTS: Whole-exome sequencing performed in a three-generation pedigree with five affected members allowed the identification of one rare non-synonymous substitution (p.R211H) in RRAD, the gene encoding the RAD GTPase, carried by all affected members of the family. Three additional rare missense variants were found in 3/186 unrelated index cases. We detected higher levels of RRAD transcripts in subepicardium than in subendocardium in human heart, and in the right ventricle outflow tract compared to the other cardiac compartments in mice. The p.R211H variant was then subjected to electrophysiological and structural investigations in human cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs). Cardiomyocytes derived from induced pluripotent stem cells from two affected family members exhibited reduced action potential upstroke velocity, prolonged action potentials and increased incidence of early afterdepolarizations, with decreased Na+ peak current amplitude and increased Na+ persistent current amplitude, as well as abnormal distribution of actin and less focal adhesions, compared with intra-familial control iPSC-CMs Insertion of p.R211H-RRAD variant in control iPSCs by genome editing confirmed these results. In addition, iPSC-CMs from affected patients exhibited a decreased L-type Ca2+ current amplitude. CONCLUSION: This study identified a potential new BrS-susceptibility gene, RRAD. Cardiomyocytes derived from induced pluripotent stem cells expressing RRAD variant recapitulated single-cell electrophysiological features of BrS, including altered Na+ current, as well as cytoskeleton disturbances.
Asunto(s)
Síndrome de Brugada/genética , Mutación Missense , Miocitos Cardíacos/patología , Proteínas ras/genética , Potenciales de Acción/genética , Adulto , Síndrome de Brugada/patología , Síndrome de Brugada/fisiopatología , Citoesqueleto/genética , Citoesqueleto/patología , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Humanos , Masculino , Miocitos Cardíacos/fisiologíaRESUMEN
Cardiac hypertrophy is an adaptive response against increased workload featuring by an increase in left ventricular mass and a thickening left ventricle wall. Here, we showed the expression of transient receptor potential canonical 1 (TRPC1) is higher in hearts of patients with hypertrophic cardiomyopathy (HCM) or heart failure (HF) than that of normal hearts. To better understand the mechanisms of TRPC1 in regulating cellular hypertrophy of human-based cardiomyocytes, we generated human pluripotent stem cell lines of TRPC1 knockout by CRISPR/Cas9. We demonstrated that knockout of TRPC1 significantly attenuated cardiomyocyte hypertrophy phenotype induced by phorbol 12-myristate 13-acetate, which was associated with abnormal activation of NF-κB. In contrast, overexpression of TRPC1 induced cardiomyocyte hypertrophy, which can be reversed by inhibition of NF-κB. Taken together, we established a stable human-based cardiomyocyte hypertrophy model and highlighted molecular mechanisms underlying TRPC1-mediated hypertrophy, aiding the development of therapeutic drugs for HCM and HF by targeting TRPC1.
Asunto(s)
Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Células Madre Pluripotentes/metabolismo , Transducción de Señal , Canales Catiónicos TRPC/antagonistas & inhibidores , Secuencia de Bases , Cardiomegalia/genética , Cardiomegalia/patología , Humanos , Canales Catiónicos TRPC/metabolismoRESUMEN
KEY POINTS: Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) capture patient-specific genotype-phenotype relationships, as well as cell-to-cell variability of cardiac electrical activity Computational modelling and simulation provide a high throughput approach to reconcile multiple datasets describing physiological variability, and also identify vulnerable parameter regimes We have developed a whole-cell model of iPSC-CMs, composed of single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM outputs We have utilized experimental data across multiple laboratories to model experimental variability and investigate subcellular phenotypic mechanisms in iPSC-CMs This framework links molecular mechanisms to cellular-level outputs by revealing unique subsets of model parameters linked to known iPSC-CM phenotypes ABSTRACT: There is a profound need to develop a strategy for predicting patient-to-patient vulnerability in the emergence of cardiac arrhythmia. A promising in vitro method to address patient-specific proclivity to cardiac disease utilizes induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). A major strength of this approach is that iPSC-CMs contain donor genetic information and therefore capture patient-specific genotype-phenotype relationships. A cited detriment of iPSC-CMs is the cell-to-cell variability observed in electrical activity. We postulated, however, that cell-to-cell variability may constitute a strength when appropriately utilized in a computational framework to build cell populations that can be employed to identify phenotypic mechanisms and pinpoint key sensitive parameters. Thus, we have exploited variation in experimental data across multiple laboratories to develop a computational framework for investigating subcellular phenotypic mechanisms. We have developed a whole-cell model of iPSC-CMs composed of simple model components comprising ion channel models with single exponential voltage-dependent gating variable rate constants, parameterized to fit experimental iPSC-CM data for all major ionic currents. By optimizing ionic current model parameters to multiple experimental datasets, we incorporate experimentally-observed variability in the ionic currents. The resulting population of cellular models predicts robust inter-subject variability in iPSC-CMs. This approach links molecular mechanisms to known cellular-level iPSC-CM phenotypes, as shown by comparing immature and mature subpopulations of models to analyse the contributing factors underlying each phenotype. In the future, the presented models can be readily expanded to include genetic mutations and pharmacological interventions for studying the mechanisms of rare events, such as arrhythmia triggers.
Asunto(s)
Arritmias Cardíacas/fisiopatología , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Trastorno del Sistema de Conducción Cardíaco/fisiopatología , Simulación por Computador , Humanos , Almacenamiento y Recuperación de la Información , FenotipoRESUMEN
BACKGROUND: The progression toward low-cost and rapid next-generation sequencing has uncovered a multitude of variants of uncertain significance (VUS) in both patients and asymptomatic "healthy" individuals. A VUS is a rare or novel variant for which disease pathogenicity has not been conclusively demonstrated or excluded, and thus cannot be definitively annotated. VUS, therefore, pose critical clinical interpretation and risk-assessment challenges, and new methods are urgently needed to better characterize their pathogenicity. METHODS: To address this challenge and showcase the uncertainty surrounding genomic variant interpretation, we recruited a "healthy" asymptomatic individual, lacking cardiac-disease clinical history, carrying a hypertrophic cardiomyopathy (HCM)-associated genetic variant (NM_000258.2:c.170C>A, NP_000249.1:p.Ala57Asp) in the sarcomeric gene MYL3, reported by the ClinVar database to be "likely pathogenic." Human-induced pluripotent stem cells (iPSCs) were derived from the heterozygous VUS MYL3(170C>A) carrier, and their genome was edited using CRISPR/Cas9 to generate 4 isogenic iPSC lines: (1) corrected "healthy" control; (2) homozygous VUS MYL3(170C>A); (3) heterozygous frameshift mutation MYL3(170C>A/fs); and (4) known heterozygous MYL3 pathogenic mutation (NM_000258.2:c.170C>G), at the same nucleotide position as VUS MYL3(170C>A), lines. Extensive assays including measurements of gene expression, sarcomere structure, cell size, contractility, action potentials, and calcium handling were performed on the isogenic iPSC-derived cardiomyocytes (iPSC-CMs). RESULTS: The heterozygous VUS MYL3(170C>A)-iPSC-CMs did not show an HCM phenotype at the gene expression, morphology, or functional levels. Furthermore, genome-edited homozygous VUS MYL3(170C>A)- and frameshift mutation MYL3(170C>A/fs)-iPSC-CMs lines were also asymptomatic, supporting a benign assessment for this particular MYL3 variant. Further assessment of the pathogenic nature of a genome-edited isogenic line carrying a known pathogenic MYL3 mutation, MYL3(170C>G), and a carrier-specific iPSC-CMs line, carrying a MYBPC3(961G>A) HCM variant, demonstrated the ability of this combined platform to provide both pathogenic and benign assessments. CONCLUSIONS: Our study illustrates the ability of clustered regularly interspaced short palindromic repeats/Cas9 genome-editing of carrier-specific iPSCs to elucidate both benign and pathogenic HCM functional phenotypes in a carrier-specific manner in a dish. As such, this platform represents a promising VUS risk-assessment tool that can be used for assessing HCM-associated VUS specifically, and VUS in general, and thus significantly contribute to the arsenal of precision medicine tools available in this emerging field.
Asunto(s)
Sistemas CRISPR-Cas/genética , Cardiomiopatías/patología , Variación Genética , Secuencia de Aminoácidos , Calcio/metabolismo , Cardiomiopatías/genética , Diferenciación Celular , Mutación del Sistema de Lectura , Edición Génica/métodos , Expresión Génica , Heterocigoto , Homocigoto , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Alineación de SecuenciaRESUMEN
BACKGROUND: Hfq is a widely conserved bacterial RNA-binding protein which generally mediates the global regulatory activities involv ed in physiological process and virulence. The goal of this study was to characterize the biological function of hfq gene in Xanthomonas axonpodis pv. citri (Xac), the causal agent of citrus canker disease. RESULTS: An hfq mutant in Xac was generated by plasmid integration. The loss of hfq resulted in attenuation of bacterial growth, motility and biofilm formation. In addition, the hfq mutation impaired Xac resistance to H2O2 and both high and low pH environments, but did not affect the virulence to citrus. RNA-Seq analyses indicated that Hfq played roles in regulating the expression of 746 genes. In hfq mutant, gene expression related to chemotaxis, secretion system, two-component system, quorum sensing and flagellar assembly were repressed, whereas expression of ribosomal genes were significantly up-regulated. The down-regulated expression of three bacterial chemotaxis related genes and seven flagella genes, which involved in cell growth and biofilm formation, were further validated by RT-qPCR. CONCLUSIONS: The study demonstrated that hfq was involved in multiple biological processes in Xac. The results could serve as initiate points for identifying regulatory sRNAs and genes controlled by Hfq-sRNA interactions in Xac.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Proteína de Factor 1 del Huésped/genética , Mutación , Xanthomonas axonopodis/fisiología , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Enfermedades de las Plantas/microbiología , Percepción de Quorum , Análisis de Secuencia de ARN , Xanthomonas axonopodis/crecimiento & desarrolloRESUMEN
RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.
Asunto(s)
Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes/métodos , Biblioteca de Genes , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Secuencia de Bases , Enfermedades Cardiovasculares/terapia , Células Cultivadas , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplanteRESUMEN
The last decade has seen impressive progress in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) that makes them ideal tools to repair injured hearts. To achieve an optimal outcome, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. Herein, we demonstrate for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC-CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong PA signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP-labeled cells (2,000) from background tissues in vivo. Second, the PANPs show a high efficiency for hESC-CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC-CMs in living mouse hearts can be assessed by PANP-based PAI with high spatial resolution (~100 µm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo, highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies.
RESUMEN
Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived CMs (iPSC-CMs) can serve as unlimited cell sources for cardiac regenerative therapy. However, the functional equivalency between human ESC-CMs and iPSC-CMs for cardiac regenerative therapy has not been demonstrated. Here, we performed a head-to-head comparison of ESC-CMs and iPSC-CMs in their ability to restore cardiac function in a rat myocardial infarction (MI) model as well as their exosomal secretome. Human ESCs and iPSCs were differentiated into CMs using small molecule inhibitors. Fluorescence-activated cell sorting analysis confirmed â¼85% and â¼83% of CMs differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T. At a single-cell level, both cell types displayed similar calcium handling and electrophysiological properties, with gene expression comparable with the human fetal heart marked by striated sarcomeres. Sub-acute transplantation of ESC-CMs and iPSC-CMs into nude rats post-MI improved cardiac function, which was associated with increased expression of angiogenic genes in vitro following hypoxia. Profiling of exosomal microRNAs (miRs) and long non-coding RNAs (lncRNAs) revealed that both groups contain an identical repertoire of miRs and lncRNAs, including some that are known to be cardioprotective. We demonstrate that both ESC-CMs and iPSC-CMs can facilitate comparable cardiac repair. This is advantageous because, unlike allogeneic ESC-CMs used in therapy, autologous iPSC-CMs could potentially avoid immune rejection when used for cardiac cell transplantation in the future. Stem Cells 2017;35:2138-2149.
Asunto(s)
Células Madre Embrionarias Humanas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Diferenciación Celular , Células Cultivadas , Exosomas , HumanosRESUMEN
RATIONALE: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. OBJECTIVE: This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. METHODS AND RESULTS: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonß1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonß1 treatment. CONCLUSIONS: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.
Asunto(s)
Antivirales/uso terapéutico , Enterovirus Humano B/aislamiento & purificación , Infecciones por Enterovirus/tratamiento farmacológico , Modelos Cardiovasculares , Miocarditis/tratamiento farmacológico , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología , Antivirales/farmacología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Infecciones por Enterovirus/metabolismo , Humanos , Técnicas In Vitro , Miocarditis/metabolismo , Miocarditis/virología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/virología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/virología , ARN Viral/metabolismo , Resultado del TratamientoRESUMEN
Single-crystalline 1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene (PPCP) microrods were prepared by a facile solution process. The PPCP microrods with smooth surfaces could absorb excitation light and propagate the photoluminescence (PL) emission. They showed excellent properties in the low optical loss of a single rod and feasible transfer between neighboring rods. Moreover, PPCP displayed typical aggregation-induced emission enhancement (AIEE) characteristics in the solution state.