Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 212
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(8): e2312870121, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38349875

RESUMEN

Oxidation self-charging batteries have emerged with the demand for powering electronic devices around the clock. The low efficiency of self-charging has been the key challenge at present. Here, a more efficient autoxidation self-charging mechanism is realized by introducing hemoglobin (Hb) as a positive electrode additive in the polyaniline (PANI)-zinc battery system. The heme acts as a catalyst that reduces the energy barrier of the autoxidation reaction by regulating the charge and spin state of O2. To realize self-charging, the adsorbed O2 molecules capture electrons of the reduced (discharged state) PANI, leading to the desorption of zinc ions and the oxidation of PANI to complete self-charging. The battery can discharge for 12 min (0.5 C) after 50 self-charging/discharge cycles, while there is nearly no discharge capacity in the absence of Hb. This biology-inspired electronic regulation strategy may inspire new ideas to boost the performance of self-charging batteries.

2.
J Med Genet ; 61(10): 973-981, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39153854

RESUMEN

BACKGROUND: Variants in the RPGR are the leading cause of X-linked retinopathies (XLRPs). Further in-depth investigation is needed to understand the natural history. METHODS: Review of all case records, molecular genetic testing results, best-corrected visual acuity (BCVA), retinal imaging data (including fundus autofluorescence imaging and optical coherence tomography (OCT)), static visual field (VF) assessments and full-field electroretinogram. RESULTS: Genetic testing was conducted on 104 male patients from 89 family pedigrees, identifying 22 novel variants and 1 de novo variant. The initial symptoms appeared in 78.2% of patients at a median age of 5 years. BCVA declined at a mean rate of 0.02 (IQR, 0-0.04) logarithm of the minimum angle of resolution per year, with a gradual, non-linear decrease over the first 40 years. Autofluorescence imaging revealed macular atrophy at a median age of 36.1 (IQR, 29.9-43.2) years. Patients experienced blindness at a median age of 42.5 (IQR, 32.9-45.2) years according to WHO visual impairment categories. OCT analysis showed a mean ellipsoid zone narrowing rate of 23.3 (IQR, -1.04-22.29) µm/month, with an accelerated reduction in the first 40 years (p<0.01). The median age at which ERG no longer detected a waveform was 26.5 (IQR, 20.5-32.8) years. Comparison by variant location indicated faster progression in patients with exon 1-14 variants during the initial two decades, while those with ORF15 variants showed accelerated progression from the third decade. CONCLUSIONS: We provide a foundation for determining the treatment window and an objective basis for evaluating the therapeutic efficacy of gene therapy for XLRP.


Asunto(s)
Proteínas del Ojo , Linaje , Tomografía de Coherencia Óptica , Humanos , Masculino , Proteínas del Ojo/genética , Adulto , China/epidemiología , Persona de Mediana Edad , Ceguera/genética , Niño , Adolescente , Electrorretinografía , Preescolar , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Enfermedades Genéticas Ligadas al Cromosoma X/epidemiología , Agudeza Visual , Adulto Joven , Mutación , Estudios de Cohortes , Femenino
3.
J Cell Mol Med ; 28(18): e70079, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39300613

RESUMEN

This study aimed to identify feature genes and explore the molecular mechanisms of keratoconus (KC). We downloaded data files from NCBI GEO public database. The Limma package was used for differential expression analysis of gene profiles. Lasso regression was used to identify the feature genes. The CIBERSORT algorithm was used to infer the proportion of immune-infiltrating cells and analyse the correlation between gene expression levels and immune cells. Related transcription factors and miRNAs of key genes were predicted using the Cistrome DB and Mircode databases. Analysis of expression differences in disease genes was based on the GeneCards database. The CMap was used to analyse targeted therapeutic drugs. IHC was performed to verify the expression levels of ATOH7 and MYRF in corneas. Exactly 593 upregulated and 473 downregulated genes were identified. Lasso regression analysis identified ATOH7, DBNDD1, RNF217-AS1, ARL11, MYRF and SNORA74B as feature genes for KC. All key genes were correlated with immune infiltration and the levels of activated memory CD4+ T cells and plasma cells were significantly increased. miRNA, IRF and STAT families were correlated to feature genes. The expression levels of key genes were significantly correlated to KC-related genes. Entinostat, ochratoxin-a, diphencyprone and GSK-3-inhibitor-II were predicted as potential KC medications. The expression of MYRF was significantly higher in the KC samples, contrary to the expression of ATOH7. KC is related to both immune infiltration and genetic factors. MYRF and ATOH7 were newly identified and verified feature genes of KC.


Asunto(s)
Queratocono , Queratocono/genética , Queratocono/metabolismo , Humanos , MicroARNs/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Bases de Datos Genéticas , Transcriptoma/genética , Redes Reguladoras de Genes , Biología Computacional/métodos
4.
Plant Mol Biol ; 114(2): 20, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363403

RESUMEN

SQUAMOSA PROMOTER BINDING PROTEIN-LIKEs (SPLs) encode plant-specific transcription factors that regulate plant growth and development, stress response, and metabolite accumulation. However, there is limited information on Scutellaria baicalensis SPLs. In this study, 14 SbSPLs were identified and divided into 8 groups based on phylogenetic relationships. SbSPLs in the same group had similar structures. Abscisic acid-responsive (ABRE) and MYB binding site (MBS) cis-acting elements were found in the promoters of 8 and 6 SbSPLs. Segmental duplications and transposable duplications were the main causes of SbSPL expansion. Expression analysis based on transcriptional profiling showed that SbSPL1, SbSPL10, and SbSPL13 were highly expressed in roots, stems, and flowers, respectively. Expression analysis based on quantitative real-time polymerase chain reaction (RT‒qPCR) showed that most SbSPLs responded to low temperature, drought, abscisic acid (ABA) and salicylic acid (SA), among which the expression levels of SbSPL7/9/10/12 were significantly upregulated in response to abiotic stress. These results indicate that SbSPLs are involved in the growth, development and stress response of S. baicalensis. In addition, 8 Sba-miR156/157 s were identified, and SbSPL1-5 was a potential target of Sba-miR156/157 s. The results of target gene prediction and coexpression analysis together indicated that SbSPLs may be involved in the regulation of L-phenylalanine (L-Phe), lignin and jasmonic acid (JA) biosynthesis. In summary, the identification and characterization of the SbSPL gene family lays the foundation for functional research and provides a reference for improved breeding of S. baicalensis stress resistance and quality traits.


Asunto(s)
Ácido Abscísico , Scutellaria baicalensis , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Scutellaria baicalensis/genética , Scutellaria baicalensis/metabolismo , Filogenia , Fitomejoramiento , Estrés Fisiológico/genética , Hormonas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
5.
J Am Chem Soc ; 146(26): 17854-17865, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776361

RESUMEN

Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.


Asunto(s)
Glucosa , Glutamina , Neoplasias Pancreáticas , Piroptosis , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Humanos , Glutamina/química , Glutamina/metabolismo , Glucosa/metabolismo , Piroptosis/efectos de los fármacos , Sistema de Transporte de Aminoácidos ASC/metabolismo , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Nanopartículas/química , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antígenos de Histocompatibilidad Menor/metabolismo , Sistema de Transporte de Aminoácidos y+
6.
Small ; : e2406484, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233534

RESUMEN

Zinc air battery (ZAB) provides a low-cost and high-energy density power source, particularly in wearable and portable devices. Despite the extensive research on air cathode catalysts, their practical application is hindered by low zinc utilization rate and severe corrosion and passivation in liquid-based alkaline electrolytes. Herein, a double-layer gel (DLKgel) is developed by leveraging the distinct kosmotropic properties of ZnCl2 and ZnSO4. Through phase separation induced by the kosmotropic differentiation (instead of membrane in decoupled systems), this DLKgel electrolyte serves a dual purpose of shielding cathode from irreversible reaction products and protecting Zn anode from passivation. Neutral ZABs with DLKgel demonstrate high zinc utilization rate of 89.3% and stable cycling over 800 h under a current density of 0.1 mA cm-2. The integration of DLKgel-based ZABs into a flexible GPS tracking device is demonstrated, highlighting the potential for broad adoption of flexible ZABs in wearable and logistics applications.

7.
J Membr Biol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354150

RESUMEN

Ion channels are integral components of the nervous system, playing a pivotal role in shaping membrane potential, neuronal excitability, synaptic transmission and plasticity. Dysfunction in these channels, such as improper expression or localization, can lead to irregular neuronal excitability and synaptic communication, which may manifest as various behavioral abnormalities, including disrupted rest-activity cycles. Research has highlighted the significant impact of voltage gated ion channels on sleep parameters, influencing sleep latency, duration and waveforms. Furthermore, these ion channels have been implicated in the vulnerability to, and the pathogenesis of, several neurological and psychiatric disorders, including epilepsy, autism, schizophrenia, and Alzheimer's disease (AD). In this comprehensive review, we aim to provide a summary of the regulatory role of three predominant types of voltage-gated ion channels-calcium (Ca2+), sodium (Na+), and potassium (K+)-in sleep across species, from flies to mammals. We will also discuss the association of sleep disorders with various human diseases that may arise from the dysfunction of these ion channels, thereby underscoring the potential therapeutic benefits of targeting specific ion channel subtypes for sleep disturbance treatment.

8.
J Transl Med ; 22(1): 447, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741132

RESUMEN

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Asunto(s)
Apigenina , Dinámicas Mitocondriales , Fármacos Neuroprotectores , Daño por Reperfusión , Células Ganglionares de la Retina , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Apigenina/farmacología , Apigenina/uso terapéutico , Animales , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Dinámicas Mitocondriales/efectos de los fármacos , Masculino , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Modelos Biológicos , Ratones Endogámicos C57BL
9.
New Phytol ; 242(5): 2077-2092, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494697

RESUMEN

Rice is susceptible to chilling stress. Identifying chilling tolerance genes and their mechanisms are key to improve rice performance. Here, we performed a genome-wide association study to identify regulatory genes for chilling tolerance in rice. One major gene for chilling tolerance variation in Indica rice was identified as a casein kinase gene OsCTK1. Its function and natural variation are investigated at the physiological and molecular level by its mutants and transgenic plants. Potential substrates of OsCTK1 were identified by phosphoproteomic analysis, protein-protein interaction assay, in vitro kinase assay, and mutant characterization. OsCTK1 positively regulates rice chilling tolerance. Three of its putative substrates, acidic ribosomal protein OsP3B, cyclic nucleotide-gated ion channel OsCNGC9, and dual-specific mitogen-activated protein kinase phosphatase OsMKP1, are each involved in chilling tolerance. In addition, a natural OsCTK1 chilling-tolerant (CT) variant exhibited a higher kinase activity and conferred greater chilling tolerance compared with a chilling-sensitive (CS) variant. The CT variant is more prevalent in CT accessions and is distributed more frequently in higher latitude compared with the CS variant. This study thus enables a better understanding of chilling tolerance mechanisms and provides gene variants for genetic improvement of chilling tolerance in rice.


Asunto(s)
Frío , Oryza , Proteínas de Plantas , Adaptación Fisiológica/genética , Genes de Plantas , Variación Genética , Estudio de Asociación del Genoma Completo , Mutación/genética , Oryza/genética , Oryza/enzimología , Oryza/fisiología , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Especificidad por Sustrato
10.
Opt Lett ; 49(6): 1575-1578, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38489454

RESUMEN

Spatiotemporal mode-locked (STML) fiber lasers have become a new platform for investigating nonlinear phenomena. In this work, spatiotemporal dual-periodic soliton pulsation (SDSP) is firstly observed in an STML fiber laser. It is found that in the SDSP, the long-period pulsations (LPPs) of different transverse modes are synchronous, while the short-period pulsations (SPPs) exhibit asynchronous modulations. The numerical simulation confirms the experimental results and further reveals that the proportion of transverse mode components can manipulate the periods of the LPP and SPP but does not affect the synchronous and asynchronous pulsations of different transverse modes. The obtained results bring the study of spatiotemporal dissipative soliton pulsation into the multi-period modulation stage, which helps to understand the complex spatiotemporal dynamics in STML fiber lasers and discover new dynamics in high-dimensional nonlinear systems.

11.
World J Urol ; 42(1): 275, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689190

RESUMEN

PURPOSE: To develop an early diagnosis model of prostate cancer based on clinical-radiomics to improve the accuracy of imaging diagnosis of prostate cancer. METHODS: The multicenter study enrolled a total of 449 patients with prostate cancer from December 2017 to January 2022. We retrospectively collected information from 342 patients who underwent prostate biopsy at Minhang Hospital. We extracted T2WI images through 3D-Slice, and used mask tools to mark the prostate area manually. The radiomics features were extracted by Python using the "Pyradiomics" module. Least Absolute Shrinkage and Selection Operator (LASSO) regression was used for data dimensionality reduction and feature selection, and the radiomics score was calculated according to the correlation coefficients. Multivariate logistic regression analysis was used to develop predictive models. We incorporated the radiomics score, PI-RADS, and clinical features, and this was presented as a nomogram. The model was validated using a cohort of 107 patients from the Xuhui Hospital. RESULTS: In total, 110 effective radiomics features were extracted. Finally, 9 features were significantly associated with the diagnosis of prostate cancer, from which we calculated the radiomics score. The predictors contained in the individualized prediction nomogram included age, fPSA/tPSA, PI-RADS, and radiomics score. The clinical-radiomics model showed good discrimination in the validation cohort (C-index = 0.88). CONCLUSION: This study presents a clinical-radiomics model that incorporates age, fPSA/PSA, PI-RADS, and radiomics score, which can be conveniently used to facilitate individualized prediction of prostate cancer before prostate biopsy.


Asunto(s)
Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Estudios Retrospectivos , Persona de Mediana Edad , Anciano , Valor Predictivo de las Pruebas , Nomogramas , Radiómica
12.
Microb Cell Fact ; 23(1): 212, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39061053

RESUMEN

Being generally regarded as safe, Kluyveromyces lactis has been widely taken for food, feed, and pharmaceutical applications, owing to its ability to achieve high levels of protein secretion and hence being suitable for industrial production of heterologous proteins. Production platform strains can be created through genetic engineering; while prototrophic cells without chromosomally accumulated antibiotics resistance genes have been generally preferred, arising the need for dominant counterselection. We report here the establishment of a convenient counterselection system based on a Frs2 variant, Frs2v, which is a mutant of the alpha-subunit of phenylalanyl-tRNA synthase capable of preferentially incorporating a toxic analog of phenylalanine, r-chloro-phenylalanine (4-CP), into proteins to bring about cell growth inhibition. We demonstrated that expression of Frs2v from an episomal plasmid in K. lactis could make the host cells sensitive to 2 mM 4-CP, and a Frs2v-expressing plasmid could be efficiently removed from the cells immediately after a single round of cell culturing in a 4-CP-contianing YPD medium. This Frs2v-based counterselection helped us attain scarless gene replacement in K. lactis without any prior engineering of the host cells. More importantly, counterselection with this system was proven to be functionally efficient also in Saccharomyces cerevisiae and Komagataella phaffii, suggestive of a broader application scope of the system in various yeast hosts. Collectively, this work has developed a strategy to enable rapid, convenient, and high-efficiency construction of prototrophic strains of K. lactis and possibly many other yeast species, and provided an important reference for establishing similar methods in other industrially important eukaryotic microbes.


Asunto(s)
Kluyveromyces , Plásmidos , Kluyveromyces/genética , Kluyveromyces/metabolismo , Plásmidos/genética , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Ingeniería Genética/métodos , Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
13.
J Surg Oncol ; 129(8): 1407-1412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38606525

RESUMEN

BACKGROUND: Retroperitoneal partial nephrectomy (RLPN) is the premier treatment for localized renal tumors despite narrow operation space. Many efforts have been taken to facilitate the operation of RLPN, but the optimal resolution remains debatable. OBJECTIVE: To explore the feasibility of using Mini-lap to improve workspace and surgical vision in RLPN. DESIGN, SETTING, AND PARTICIPANTS: A multicenter retrospective review of 51 patients who underwent RLPN with Mini-lap from January 2018 to December 2020 was conducted. SURGICAL PROCEDURE: Standard RLPN under three poles was performed in all cases. We highlighted the usage of Mini-lap (Teleflex Minilap percutaneous Surgical System) as a novel retractor in RLPN. OUTCOME AND MEASUREMENTS AND STATICAL ANALYSIS: Demographics, preoperative, intraoperative, and postoperative outcomes were assessed. RESULTS AND LIMITATIONS: All 51 cases completed RLPN with three ports successfully and no conversion to open surgery. The mean diameter of tumors was (3.53 ± 1.05) cm, in which 62.7% (32/51) were located anteriorly. The operation time and warm ischemic time (WIT) were (86.7 ± 15.9) min and (25.6 ± 5) min respectively. Minor complications (Clavien grade 1-2) occurred in 6 cases. The limitations were small sample size, retrospective design, and absence of control. CONCLUSIONS: Mini-lap could be used as a mini-retractor in RLPN, sparing extra assistant ports, expanding workspace, and optimizing vision. PATIENT SUMMARY: With highlights of larger workspace and less instrument interference, mini-lap could be applied in retroperitoneal laparoscopic partial nephrectomy.


Asunto(s)
Neoplasias Renales , Laparoscopía , Nefrectomía , Humanos , Nefrectomía/métodos , Laparoscopía/métodos , Estudios Retrospectivos , Femenino , Masculino , Persona de Mediana Edad , Espacio Retroperitoneal/cirugía , Neoplasias Renales/cirugía , Neoplasias Renales/patología , Anciano , Tempo Operativo , Estudios de Factibilidad , Adulto , Estudios de Seguimiento , Pronóstico
14.
Ann Vasc Surg ; 102: 209-215, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37922962

RESUMEN

BACKGROUND: This study aimed to assess the safety and efficacy of the transbrachial approach as a single or combined procedure for complex interventions in peripheral artery disease (PAD). METHODS: Between March 2011 and April 2021, 169 patients with PAD underwent endovascular therapy via the transbrachial approach as a single or dual procedure. Univariate and multivariate analyses were performed to evaluate the predictors of adverse events at the brachial puncture site. All demographic, clinical, and perioperative data were acquired from electronic medical records and retrospectively analyzed. RESULTS: Brachial artery access was used alone and in combination in 87 and 82 patients, respectively. Patients in the combined-approach group underwent more intraoperative stent implantations and had more vascular closure devices (VCD). Multivariate logistic regression analysis revealed that hypertension was an independent factor for higher rates of brachial puncture site adverse events (odds ratio, 4.76; 95% confidence interval, 1.33-16.97; P = 0.016). Brachial artery access-site complications occurred in 26 patients, including 6 (23.1%) major and 20 (76.9%) minor entry-site complications. Entry-site complications were observed in 21 (16.8%) and 5 (11.4%) patients assigned to manual compression and VCD groups, respectively. There were no significant intergroup differences in the incidence of major or minor complications. Interestingly, patients assigned to the VCD group did not experience major entry-site complications. CONCLUSIONS: The transbrachial approach, as a single or combined procedure, is a safe alternative to complex interventions in patients with PAD. Complications of brachial access progressively decrease with improved blood pressure control.


Asunto(s)
Cateterismo Periférico , Enfermedad Arterial Periférica , Humanos , Cateterismo Periférico/efectos adversos , Cateterismo Periférico/métodos , Estudios Retrospectivos , Resultado del Tratamiento , Enfermedad Arterial Periférica/diagnóstico por imagen , Enfermedad Arterial Periférica/terapia , Enfermedad Arterial Periférica/etiología , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/cirugía , Arteria Femoral
15.
Lipids Health Dis ; 23(1): 313, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334296

RESUMEN

BACKGROUND: Hypercholesterolemia has been identified as an independent predictor of cardiovascular disease (CVD). Inclisiran, an innovative small interfering RNA agent, is anticipated to result in a notable reduction of approximately 50% in low-density lipoprotein cholesterol (LDL-C) levels. Given its transformative impact, this study scrutinized the eligibility of the US population for inclisiran treatment and evaluated its potential effects on hypercholesterolemia and the primary prevention of CVD. METHODS: This study applied the eligibility criteria from the ORION 10 and 11 trials to the 1999-2018 National Health and Nutrition Examination Survey (NHANES) dataset to estimate the size of the eligible population for atherosclerotic cardiovascular disease (ASCVD) and ASCVD-risk equivalents. Utilizing the reduction in LDL-C levels from ORION 10, this study predicted the impact of inclisiran on LDL-C levels among ASCVD patients. Similarly, leveraging the changes in lipid levels from ORION 11, this study predicted inclisiran's effect on the 10-year change in CVD risk and preventable CVD events in the ASCVD-risk equivalents population, employing the Framingham CVD Risk Score. RESULTS: The study identified 579 ASCVD patients (5 million) and 382 ASCVD-risk equivalents (2.66 million) who met the eligibility criteria from ORION 10 and 11. Among the ASCVD population, 3.5 million (70.2%) would achieve a ≥ 50% reduction in LDL-C levels after treatment. Furthermore, 4.6 million (91.3%) would achieve LDL-C levels < 70 mg/dL, and 3.8 million (75%) would achieve LDL-C levels < 55 mg/dL after treatment. For the ASCVD-risk equivalents population, the estimated 10-year CVD risk would decrease from 25.3 to 17.7%, an absolute reduction of 7.6% and a relative reduction of 30% following inclisiran treatment, potentially preventing 202,353 CVD events over a decade, including 138,084 coronary heart disease cases, 37,351 strokes, and 23,894 congestive heart failure cases. CONCLUSIONS: Inclisiran has the potential to substantially reduce the prevalence of hypercholesterolemia and prevent nearly 200,000 CVD events in eligible US adults.


Asunto(s)
Enfermedades Cardiovasculares , LDL-Colesterol , Hipercolesterolemia , Encuestas Nutricionales , Prevención Primaria , Humanos , Hipercolesterolemia/epidemiología , Hipercolesterolemia/sangre , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/sangre , LDL-Colesterol/sangre , Masculino , Femenino , Persona de Mediana Edad , Adulto , Anciano , ARN Interferente Pequeño , Oligonucleótidos/uso terapéutico
16.
Genomics ; 115(5): 110701, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37597790

RESUMEN

BACKGROUND: Myocardial infarction (MI) is one of the most serious cardiovascular diseases, characterized by a rapid and irreversible decline in myocardial function. Early detection of patients with MI and prolonging the optimal therapeutic window of acute myocardial infarction (AMI) are particularly important. This study aimed to identify the diagnostic biomarkers and novel therapeutic targets for acute myocardial infarction. METHOD: We generated the AMI mouse models by ligating the proximal left anterior descending coronary artery. Six time points-Sham, AMI 10-min, 1-h, 6-h, 24-h, and 72-h-were chosen to examine the molecular changes that occur during the AMI process. RNA-seq and DIA-MS were performed on the infarcted left ventricular tissues of AMI mice at each time point. Co-expression pattern genes were screened from myocardial infarction samples at different time points by time-series analysis. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were used to examine these genes. Using the Interactive Gene/Protein Retrieval Tool (STRING) database, the protein-protein interaction network (PPI) was constructed and the hub genes were identified. In order to evaluate the diagnostic value of hub genes, a receiver operating characteristic (ROC) curve was constructed. An independent data set, GSE163772, confirmed the diagnostic value of hub genes further. RESULT: We obtained the expression profiles at different time points after the occurrence of heart failure through high-throughput sequencing, and found 167 genes with similar expression patterns through time series analysis. The immune response and immune-related pathways had the greatest enrichment of these genes. Among them, Itgb2 Syk, Tlr4, Tlr2, Itgax, and Lcp2 may play key roles as hub genes. Combined with the results of proteomic analysis, it was found that the expression of Coro1a in both omics increased with time. The results of external validation showed that TLR2, ITGAX, and LCP2 had good predictive ability for AMI diagnosis. CONCLUSION: Itgb2, Syk, Tlr4, Tlr2, Itgax, Lcp2 and Coro1a are considered to be the seven key genes significantly associated with AMI. Our results may provide potential targets for the prevention of adverse ventricular remodeling and the treatment of AMI.


Asunto(s)
Infarto del Miocardio , Receptor Toll-Like 2 , Humanos , Animales , Ratones , Receptor Toll-Like 2/genética , Proteómica , Receptor Toll-Like 4/genética , Transcriptoma , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Biomarcadores/metabolismo
17.
Sensors (Basel) ; 24(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39275517

RESUMEN

Surface engineering techniques can be used to develop high-performance gas sensing materials and advance the development of sensors. In this study, we improved the gas sensing performance of two-dimensional (2D) WO3 nanoplates by combining surface Zn modification and the in situ formation of ZnWO4/WO3 heterojunctions. Introducing Zn atoms by surface modification can reconstruct the atomic surface of 2D WO3 nanoplates, creating additional active sites. This allowed for the preparation of various types of ZnWO4/WO3 heterojunctions on the surface of the WO3 nanoplates, which improved the selectivity and sensitivity to the target gas triethylamine. The sensor exhibited good gas sensing performance for triethylamine even at low operating temperatures and strongly resisted humidity changes. The ZnWO4/WO3 material we prepared demonstrated a nearly threefold improvement in the triethylamine (TEA) response, with a gas sensing responsivity of 40.75 for 10 ppm of TEA at 250 °C. The sensor based on ZnWO4/WO3 has a limit of detection (LOD) for TEA of 200 ppb in practical measurements (its theoretical LOD is even as low as 31 ppb). The method of growing ZnWO4 on the surface of WO3 nanoplates using surface modification techniques to form surface heterojunctions differs from ordinary composites. The results suggest that the in situ construction of surface heterojunctions using surface engineering strategies, such as in situ modifying, is a practical approach to enhance the gas sensing properties and resistance to the humidity changes of metal oxide materials.

18.
Int Wound J ; 21(4): e14584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38112035

RESUMEN

Varicose veins are the prevalent vascular disorder that has conventionally been managed via risky postoperative wound infections and conventional surgery. While ultrasound-guided microwave ablation (UMA) has gained attention as a minimally invasive alternative, there is still a lack of research examining its comparative effectiveness. A prospective comparative investigation was undertaken in the Zhejiang region of China from January to November 2023, involving 140 patients who had received the diagnosis of primary varicose veins. An equal number of 70 patients underwent UMA and conventional surgery. Exclusion criteria for the study encompassed adult patients aged 18-65, with the exception of those who had undergone prior venous surgery, deep vein thrombosis or peripheral arterial disease. The demographical characteristics, procedural details and complication profiles of patients who developed postoperative wound infections within 30 days were analysed statistically. The outcomes demonstrated that postoperative wound infections were significantly diminished (5.7%) with UMA in comparison to conventional surgery (17.1%). In addition, the average duration of procedures and length of hospital stay for UMA patients were both reduced, although neither of these differences was found to be statistically significant (p > 0.05). Infection management, age and gender distribution of varicose veins were comparable between the two groups (p > 0.05). A significant inverse correlation was observed between the severity of varicose veins and postoperative outcomes, as determined by the regression analysis (p < 0.05). Using UMA to treat varicose veins showed promise as an alternative to conventional surgery, specifically in minimizing the incidence of postoperative wound infections. Additional research and clinical consideration are needed regarding the potential transition toward minimally invasive techniques in treatment of varicose veins, as suggested by these results.


Asunto(s)
Ablación por Catéter , Terapia por Láser , Várices , Adulto , Humanos , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/etiología , Infección de la Herida Quirúrgica/cirugía , Microondas/uso terapéutico , Estudios Prospectivos , Terapia por Láser/métodos , Ablación por Catéter/métodos , Vena Safena/diagnóstico por imagen , Vena Safena/cirugía , Várices/cirugía , Ultrasonografía Intervencional , Resultado del Tratamiento
19.
Physiol Mol Biol Plants ; 30(3): 383-399, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38633273

RESUMEN

Acanthopanax gracilistylus is a deciduous plant in the family Araliaceae, which is commonly used in Chinese herbal medicine, as the root bark has functions of nourishing the liver and kidneys, removing dampness and expelling wind, and strengthening the bones and tendons. Kaurenoic acid (KA) is the main effective substance in the root bark of A. gracilistylus with strong anti-inflammatory effects. To elucidate the KA biosynthesis pathway, second-generation (DNA nanoball) and third-generation (Pacific Biosciences) sequencing were performed to analyze the transcriptomes of the A. gracilistylus leaves, roots, and stems. Among the total 505,880 isoforms, 408,954 were annotated by seven major databases. Sixty isoforms with complete open reading frames encoding 11 key enzymes involved in the KA biosynthesis pathway were identified. Correlation analysis between isoform expression and KA content identified a total of eight key genes. Six key enzyme genes involved in KA biosynthesis were validated by real-time quantitative polymerase chain reaction. Based on the sequence analysis, the spatial structure of ent-kaurene oxidase was modeled, which plays roles in the three continuous oxidations steps of KA biosynthesis. This study greatly enriches the transcriptome data of A. gracilistylus and facilitates further analysis of the function and regulation mechanism of key enzymes in the KA biosynthesis pathway. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01436-7.

20.
Angew Chem Int Ed Engl ; 63(8): e202318470, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38179860

RESUMEN

The practical implementation of aqueous zinc-iodine batteries (ZIBs) is hindered by the rampant Zn dendrites growth, parasite corrosion, and polyiodide shuttling. In this work, ionic liquid EMIM[OAc] is employed as an all-round solution to mitigate challenges on both the Zn anode and the iodine cathode side. First, the EMIM+ embedded lean-water inner Helmholtz plane (IHP) and inert solvation sheath modulated by OAc- effectively repels H2 O molecules away from the Zn anode surface. The preferential adsorption of EMIM+ on Zn metal facilitates uniform Zn nucleation via a steric hindrance effect. Second, EMIM+ can reduce the polyiodide shuttling by hindering the iodine dissolution and forming an EMIM+ -I3 - dominated phase. These effects holistically enhance the cycle life, which is manifested by both Zn || Zn symmetric cells and Zn-I2 full cells. ZIBs with EAc deliver a capacity decay rate of merely 0.01 ‰ per cycle after over 18,000 cycles at 4 A g-1 , and lower self-discharge and better calendar life than the ZIBs without ionic liquid EAc additive.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA