Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Am Chem Soc ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38615326

RESUMEN

Two-dimensional (2D) alloys hold great promise to serve as important components of 2D transistors, since their properties allow continuous regulation by varying their compositions. However, previous studies are mainly limited to the metallic/semiconducting ones as contact/channel materials, but very few are related to the insulating dielectrics. Here, we use a facile one-step chemical vapor deposition (CVD) method to synthesize ultrathin Bi2SixGe1-xO5 dielectric alloys, whose composition is tunable over the full range of x just by changing the relative ratios of the GeO2/SiO2 precursors. Moreover, their dielectric properties are highly composition-tunable, showing a record-high dielectric constant of >40 among CVD-grown 2D insulators. The vertically grown nature of Bi2GeO5 and Bi2SixGe1-xO5 enables polymer-free transfer and subsequent clean van der Waals integration as the high-κ encapsulation layer to enhance the mobility of 2D semiconductors. Besides, the MoS2 transistors using Bi2SixGe1-xO5 alloy as gate dielectrics exhibit a large Ion/Ioff (>108), ideal subthreshold swing of ∼61 mV/decade, and a small gate hysteresis (∼5 mV). Our work not only gives very few examples on controlled CVD growth of insulating dielectric alloys but also expands the family of 2D single-crystalline high-κ dielectrics.

2.
Angew Chem Int Ed Engl ; : e202407772, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38872256

RESUMEN

Electrocatalytic conversion of CO2 into formate is recognized an economically-viable route to upgrade CO2, but requires high overpotential to realize the high selectivity owing to high energy barrier for driving the involved proton-coupled electron transfer (PCET) processes and serious ignorance of the second PCET. Herein, we surmount the challenge through sequential regulation of the potential-determining step (PDS) over Te-doped Bi (TeBi) nanotips. Computational studies unravel the incorporation of Te heteroatoms alters the PDS from the first PCET to the second one by substantially lowering the formation barrier for *OCHO intermediate, and the high-curvature nanotips induce enhanced electric field that can steer the formation of asymmetric *HCOOH. In this scenario, the thermodynamic barrier for *OCHO and *HCOOH can be sequentially decreased, thus enabling a high formate selectivity at low overpotential. Experimentally, distinct TeBi nanostructures are obtained via controlling Te content in the precursor and TeBi nanotips achieve >90% of Faradaic efficiency for formate production over a comparatively positive potential window (-0.57 V to -1.08 V). The strong Bi-Te covalent bonds also afford a robust stability. In an optimized membrane electrode assembly device, the formate production rate at 3.2 V reaches 10.1 mmol h-1 cm-2, demonstrating great potential for practical application.

3.
Environ Res ; 216(Pt 2): 114567, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36244441

RESUMEN

The recovery of heavy metals from electroplating sludge is important for alleviating heavy metal pollution and recycling metal resources. However, the selective recovery of metal resources is limited by the complexity of electroplating sludge. Herein, CuFe bimetallic Fenton-like catalysts were successfully prepared from electroplating sludge by a facile room-temperature ultrasonic-assisted co-precipitation method. The prepared CuFe-S mainly consisted of nanorods with diameters of 20-30 nm and lengths of 100-200 nm and a small number of irregular particles. Subsequently, we performed tetracycline (TC) degradation experiments, and the results showed that the product CuFe-S had very good performance over a wide pH range (2-11). At an initial pH = 2, CuFe-S could degrade 91.9% of 50 mg L-1 TC aqueous solution within 30 min, which is better than that of a single metal catalyst. Free radical scavenging experiments and electron paramagnetic resonance (EPR) tests revealed that ·OH was the main active species for the degradation of TC by CuFe-S. In conclusion, a CuFe bimetallic Fenton-like catalyst was developed for the catalytic degradation of antibiotics, which provides a novel technical route for the resource utilization of electroplating sludge and shows an important practical application prospect.


Asunto(s)
Metales Pesados , Aguas del Alcantarillado , Galvanoplastia , Cobre , Catálisis , Antibacterianos , Peróxido de Hidrógeno
4.
Nano Lett ; 22(18): 7659-7666, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069426

RESUMEN

Bi2O2Te has the smallest effective mass and preferable carrier mobility in the Bi2O2X (X = S, Se, Te) family. However, compared to the widely explored Bi2O2Se, the studies on Bi2O2Te are very rare, probably attributed to the lack of efficient ways to achieve the growth of ultrathin films. Herein, ultrathin Bi2O2Te crystals were successfully synthesized by a trace amount of O2-assisted chemical vapor deposition (CVD) method, enabling the observation of ultrahigh low-temperature Hall mobility of >20 000 cm2 V-1 s-1, pronounced Shubnikov-de Haas quantum oscillations, and small effective mass of ∼0.10 m0. Furthermore, few nm thick CVD-grown Bi2O2Te crystals showed high room-temperature Hall mobility (up to 500 cm2 V-1 s-1) both in nonencapsulated and top-gated device configurations and preserved the intrinsic semiconducting behavior with Ion/Ioff ∼ 103 at 300 K and >106 at 80 K. Our work uncovers the veil of semiconducting Bi2O2Te with high mobility and brings new blood into Bi2O2X family.


Asunto(s)
Bismuto , Enfermedades Cardiovasculares , Bismuto/química , Gases/química , Humanos , Tamaño de la Partícula , Telurio/química
5.
Nano Lett ; 20(10): 7469-7475, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32881534

RESUMEN

The integration of high-k gate dielectrics with two-dimensional (2D) semiconducting channel materials is essential for high-performance and low-power electronics. However, the conformal deposition of a uniform high-k dielectric with sub-1 nm equivalent oxide thickness (EOT) and high interface quality on high-mobility 2D semiconductors is still challenging. Here, we report a facile approach to synthesize a uniform high-k (εr ∼ 22) amorphous native oxide Bi2SeOx on the high-mobility 2D semiconducting Bi2O2Se using O2 plasma at room temperature. The conformal native oxide can directly serve as gate dielectrics with EOT of ∼0.9 nm, while the original properties of underlying 2D Bi2O2Se is preserved. Furthermore, high-resolution area-selective oxidation of Bi2O2Se is achieved to fabricate discrete electronic components. This facile integration of a high-mobility 2D semiconductor and its high-k native oxide holds high promise for next-generation nanoelectronics.

6.
J Am Chem Soc ; 142(6): 2726-2731, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31985227

RESUMEN

Two-dimensional (2D) semiconductors hold great promise in flexible electronics because of their intrinsic flexibility and high electrical performance. However, the lack of facile synthetic and subsequent device fabrication approaches of high-mobility 2D semiconducting thin films still hinders their practical applications. Here, we developed a facile, rapid, and scalable solution-assisted method for the synthesis of a high-mobility semiconducting oxyselenide (Bi2O2Se) thin film by the selenization and decomposition of a precursor solution of Bi(NO3)3·5H2O. Simply by changing the rotation speed in spin-coating of the precursor solution, the thicknesses of Bi2O2Se thin films can be precisely controlled down to few atomic layers. The as-synthesized Bi2O2Se thin film exhibited a high Hall mobility of ∼74 cm2 V-1 s-1 at room temperature, which is much superior to other 2D thin-film semiconductors such as transition metal dichalcogenides. Remarkably, flexible top-gated Bi2O2Se transistors showed excellent electrical stability under repeated electrical measurements on flat and bent substrates. Furthermore, Bi2O2Se transistor devices on muscovite substrates can be readily transferred onto flexible polyvinyl chloride (PVC) substrates with the help of thermal release tape. The integration of a high-mobility thin-film semiconductor, excellent stability, and easy transfer onto flexible substrates make Bi2O2Se a competitive candidate for future flexible electronics.

7.
Nano Lett ; 19(3): 2148-2153, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30835131

RESUMEN

Emerging two-dimensional (2D) semiconducting materials serve as promising alternatives for next-generation digital electronics and optoelectronics. However, large-scale 2D semiconductor films synthesized so far are typically polycrystalline with defective grain boundaries that could degrade their performance. Here, for the first time, wafer-size growth of a single-crystal Bi2O2Se film, which is a novel air-stable 2D semiconductor with high mobility, was achieved on insulating perovskite oxide substrates [SrTiO3, LaAlO3, (La, Sr)(Al, Ta)O3]. The layered Bi2O2Se epilayer exhibits perfect lattice matching and strong interaction with perovskite oxide substrates, which enable unidirectional alignment and seamless mergence of multiple seeds into single-crystal continuous films free of detrimental grain boundaries. The single-crystal Bi2O2Se thin films show excellent spatial homogeneity over the entire wafer and allow for the batch fabrication of high-performance field-effect devices with high mobilities of ∼150 cm2 V-1 s-1 at room temperature, excellent switching behavior with large on/off ratio of >105, and high drive current of ∼45 µA µm-1 at a channel length of ∼5 µm. Our work makes a step toward the practical applications of high-mobility semiconducting 2D layered materials and provides an alternative platform of oxide heterostructure to investigate novel physical phenomena.

8.
Nano Lett ; 19(1): 197-202, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30557023

RESUMEN

The air-stable and high-mobility two-dimensional (2D) Bi2O2Se semiconductor has emerged as a promising alternative that is complementary to graphene, MoS2, and black phosphorus for next-generation digital applications. However, the room-temperature residual charge carrier concentration of 2D Bi2O2Se nanoplates synthesized so far is as high as about 1019-1020 cm-3, which results in a poor electrostatic gate control and unsuitable threshold voltage, detrimental to the fabrication of high-performance low-power devices. Here, we first present a facile approach for synthesizing 2D Bi2O2Se single crystals with ultralow carrier concentration of ∼1016 cm-3 and high Hall mobility up to 410 cm2 V-1 s-1 simultaneously at room temperature. With optimized conditions, these high-mobility and low-carrier-concentration 2D Bi2O2Se nanoplates with domain sizes greater than 250 µm and thicknesses down to 4 layers (∼2.5 nm) were readily grown by using Se and Bi2O3 powders as coevaporation sources in a dual heating zone chemical vapor deposition (CVD) system. High-quality 2D Bi2O2Se crystals were fabricated into high-performance and low-power transistors, showing excellent current modulation of >106, robust current saturation, and low threshold voltage of -0.4 V. All these features suggest 2D Bi2O2Se as an alternative option for high-performance low-power digital applications.

9.
Angew Chem Int Ed Engl ; 59(41): 17938-17943, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32643300

RESUMEN

We exploit a high-performing resistive-type trace oxygen sensor based on 2D high-mobility semiconducting Bi2 O2 Se nanoplates. Scanning tunneling microscopy combined with first-principle calculations confirms an amorphous Se atomic layer formed on the surface of 2D Bi2 O2 Se exposed to oxygen, which contributes to larger specific surface area and abundant active adsorption sites. Such 2D Bi2 O2 Se oxygen sensors have remarkable oxygen-adsorption induced variations of carrier density/mobility, and exhibit an ultrahigh sensitivity featuring minimum detection limit of 0.25 ppm, long-term stability, high durativity, and wide-range response to concentration up to 400 ppm at room temperature. 2D Bi2 O2 Se arrayed sensors integrated in parallel form are found to possess an oxygen detection minimum of sub-0.25 ppm ascribed to an enhanced signal-to-noise ratio. These advanced sensor characteristics involving ease integration show 2D Bi2 O2 Se is an ideal candidate for trace oxygen detection.

10.
Nano Lett ; 17(5): 3021-3026, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28398056

RESUMEN

Non-neutral layered crystals, another group of two-dimensional (2D) materials that lack a well-defined van der Waals (vdWs) gap, are those that form strong chemical bonds in-plane but display weak out-of-plane electrostatic interactions, exhibiting intriguing properties for the bulk counterpart. However, investigation of the properties of their atomically thin counterpart are very rare presumably due to the absence of efficient ways to achieve large-area high-quality 2D crystals. Here, high-mobility atomically thin Bi2O2Se, a typical non-neutral layered crystal without a standard vdWs gap, was synthesized via a facial chemical vapor deposition (CVD) method, showing excellent controllability for thickness, domain size, nucleation site, and crystal-phase evolution. Atomically thin, large single crystals of Bi2O2Se with lateral size up to ∼200 µm and thickness down to a bilayer were obtained. Moreover, optical and electrical properties of the CVD-grown 2D Bi2O2Se crystals were investigated, displaying a size-tunable band gap upon thinning and an ultrahigh Hall mobility of >20000 cm2 V-1 s-1 at 2 K. Our results on the high-mobility 2D Bi2O2Se semiconductor may activate the synthesis and related fundamental research of other non-neutral 2D materials.

11.
Small ; 13(18)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28263026

RESUMEN

Nanostructures of ternary topological insulator (TI) Bi2 Te2 Se are, in principle, advantageous to the manifestation of topologically nontrivial surface states, due to significantly enhanced surface-to-volume ratio compared with its bulk crystals counterparts. Herein, the synthesis of 2D Bi2 Te2 Se crystals on mica via the van der Waals epitaxy method is explored and systematically the growth behaviors during the synthesis process are investigated. Accordingly, 2D Bi2 Te2 Se crystals with domain size up to 50 µm large and thickness down to 2 nm are obtained. A pronounced weak antilocalization effect is clearly observed in the 2D Bi2 Te2 Se crystals at 2 K. The method for epitaxial growth of 2D ternary Bi2 Te2 Se crystals may inspire materials engineering toward enhanced manifestation of the subtle surface states of TIs and thereby facilitate their potential applications in next-generation spintronics.

12.
Nano Lett ; 15(6): 4206-13, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26020567

RESUMEN

Transparent conductive film on plastic substrate is a critical component in low-cost, flexible, and lightweight optoelectronics. Industrial-scale manufacturing of high-performance transparent conductive flexible plastic is needed to enable wide-ranging applications. Here, we demonstrate a continuous roll-to-roll (R2R) production of transparent conductive flexible plastic based on a metal nanowire network fully encapsulated between graphene monolayer and plastic substrate. Large-area graphene film grown on Cu foil via a R2R chemical vapor deposition process was hot-laminated onto nanowires precoated EVA/PET film, followed by a R2R electrochemical delamination that preserves the Cu foil for reuse. The encapsulated structure minimized the resistance of both wire-to-wire junctions and graphene grain boundaries and strengthened adhesion of nanowires and graphene to plastic substrate, resulting in superior optoelectronic properties (sheet resistance of ∼8 Ω sq(-1) at 94% transmittance), remarkable corrosion resistance, and excellent mechanical flexibility. With these advantages, long-cycle life flexible electrochromic devices are demonstrated, showing up to 10000 cycles.

13.
Zhonghua Yi Xue Za Zhi ; 94(10): 784-7, 2014 Mar 18.
Artículo en Zh | MEDLINE | ID: mdl-24844967

RESUMEN

OBJECTIVE: To explore the effects of cyclooxygenase-2 (COX-2) and its inhibitor valdecoxib in liver fibrosis. METHODS: Hepatic fibrosis was induced by carbon tetrachloride for 8 weeks in wild-type and COX-2 knockout mice. And the levels of hyaluronic acid (HA), collagen IV(IV-C), procollagen III(PCIII) and α-smooth muscle actin (α-SMA ) were determined. Cyclin D and cyclin E were measured in hepatic satellite cell (HSC) after a treatment of valdecoxib for 24 h or not. RESULTS: HA, IV-C, PCIII and α-SMA all had significant difference in 3 groups (control group:(180 ± 13) µg/L, (56 ± 9) µg/L, (39 ± 13) µg/L, 2.49% ± 0.24% in control, F = 78.52, 61.30, 41.96, 28.15, all P < 0.05) . HA, IV-C and α-SMA in wild-type liver fibrosis mice were higher than those in knockout counterparts ((413 ± 60) vs (308 ± 42) µg/L, (96 ± 13) vs (74 ± 10 ) µg/L, 8.99% ± 0.81% vs 4.72% ± 0.50%, all P < 0.01). But PCIII were similar between two groups ((82 ± 12) vs (72 ± 15) µg/L, P = 0.06). Wild-type mice expressed higher levels of cyclin D and cyclin E than those of knockout mice (0.96 ± 0.15 vs 0.76 ± 0.10, 0.94 ± 0.13 vs 0.82 ± 0.09, P = 0.02, 0.04). The rates of cyclin D and cyclin E were 0.40 ± 0.06 and 0.38 ± 0.05, 0.35 ± 0.04 and 0.37 ± 0.06 respectively after a treatment of valdecoxib. And both deceased in hepatic satellite cell of wild-type and knockout mice (both P < 0.01) versus those without valdecoxib. CONCLUSIONS: COX-2 increases the activation and proliferation of HSC leading to liver fibrosis. And its inhibitor may depress liver fibrosis by decreasing the expressions of cyclin D and cyclin E in COX-2 dependent and(or) independent way.


Asunto(s)
Ciclooxigenasa 2/genética , Células Estrelladas Hepáticas/efectos de los fármacos , Isoxazoles/farmacología , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Sulfonamidas/farmacología , Actinas/metabolismo , Animales , Colágeno/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática Experimental/inducido químicamente , Masculino , Ratones , Ratones Noqueados , Proteínas Oncogénicas/metabolismo
14.
Nanoscale ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973699

RESUMEN

Two-dimensional semiconductors with large intrinsic polarity are highly attractive for applications in high-speed electronics, ultrafast and highly sensitive photodetectors and photocatalysis. However, previous studies mainly focus on neutral layered polar 2D materials with limited vertical dipoles and electrostatic potential difference (typically <1.5 eV). Here, using the first-principles calculations, we systematically investigated the polarity of few-layer Bi3O2.5Se2 semiconductors with ultrahigh predicted room-temperature carrier mobility (1790 cm2 V-1 s-1 for the monolayer). Thanks to its unique non-neutral layered structure, few-layer Bi3O2.5Se2 contributes to a substantial interlayer charge transfer (>0.5 e-) and almost the highest electrostatic potential difference (ΔΦ) of ∼4 eV among the experimentally attainable 2D layered materials. More importantly, positioning graphene on different charged layers ([Bi2O2.5]+ or [BiSe2]-) switches the charge transfer direction, inducing selective n-doping or p-doping. Furthermore, we can use polar Bi3O2.5Se2 as an exemplary assisted gate to gain additional holes or electrons except for the external electric field, thus breaking the traditional limitations of gate tunability (∼1014 cm-2) observed in experimental settings. Our work not only expands the family of polar 2D semiconductors, but also makes a conceptual advance on using them as an assisted gate in transistors.

15.
Nat Commun ; 15(1): 1259, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341422

RESUMEN

Achieving room-temperature high anisotropic magnetoresistance ratios is highly desirable for magnetic sensors with scaled supply voltages and high sensitivities. However, the ratios in heterojunction-free thin films are currently limited to only a few percent at room temperature. Here, we observe a high anisotropic magnetoresistance ratio of -39% and a giant planar Hall effect (520 µΩ⋅cm) at room temperature under 9 T in ß-Ag2Te crystals grown by chemical vapor deposition. We propose a theoretical model of anisotropic scattering - induced by a Dirac cone tilt and modulated by intrinsic properties of effective mass and sound velocity - as a possible origin. Moreover, small-size angle sensors with a Wheatstone bridge configuration were fabricated using the synthesized ß-Ag2Te crystals. The sensors exhibited high output response (240 mV/V), high angle sensitivity (4.2 mV/V/°) and small angle error (<1°). Our work translates the developments in topological insulators to a broader impact on practical applications such as high-field magnetic and angle sensors.

16.
Materials (Basel) ; 16(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068033

RESUMEN

Environmental pollution has been widely considered by researchers, especially the heavy metals damage to the human and ecological environment is irreversible. Adsorption is an important method to remove heavy metal ions from the environment. In this paper, humic acid (HA) was functionalized by the improved Hummers method, and its adsorption capacity for Pb(II) was studied. The results of scanning electron microscope (SEM), X-ray diffraction (XRD), Roman, and Brunauer-Emmett-Teller (BET) showed that the thickness of irregular particles decreases to a layered structure during the transformation process. In addition, X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared spectra (FT-IR) spectra showed that the surface of oxidized-biochar (OBC) was rich in reactive oxygen species, which was conducive to the formation of coordination bonds with Pb(II). Further adsorption experiments showed that it was a spontaneous monolayer chemisorption. The results of the DFT calculation showed that -COOH had the lowest adsorption energy for Pb(II), and it was easier to form stable chemical bonds than -OH, -C=O, and -C-O-C-. Because those oxygen-containing functional groups not only can promote electrostatic attraction but also are more favorable for forming a covalent bond with Pb(II). This study had guiding significance for the deep modification and application of weathered coal as a heavy metal ion adsorbent or cation exchanger.

17.
Materials (Basel) ; 16(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38138789

RESUMEN

Ammonia (NH3) is considered to be a critical chemical feedstock in agriculture, industry, and other fields. However, conventional Haber-Bosch (HB) ammonia (NH3) production suffers from high energy consumption, harsh reaction conditions, and large carbon dioxide emissions. Despite the emergence of electrocatalytic reduction of nitrogenous substances to NH3 under ambient conditions as a new frontier, there are several bottleneck problems that impede the commercialization process. These include low catalytic efficiency, competition with the hydrogen evolution reaction, and difficulties in breaking the N≡N triple bond. In this review, we explore the recent advances in electrocatalytic NH3 synthesis, using nitrogen and nitrate as reactants. We focus on the contribution of the catalyst design, specifically based on molecular-catalyst interaction mechanisms, as well as chemical bond breaking and directional coupling mechanisms, to address the aforementioned problems during electrocatalytic NH3 synthesis. Finally, we discuss the relevant opportunities and challenges in this field.

18.
Sci Rep ; 13(1): 135, 2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599914

RESUMEN

A new adsorbent with chromium removal function was synthesized by carbon thermal method using iron-containing waste Fenton sludge and carbon-containing solid waste fly ash to treat high pH scoring wastewater generated from industrial processes. The results showed that the adsorbent used T = 273.15 K, pH = 10, t = 1200 min, C0 = 100 mg/L, had a removal rate of Cr(VI) of more than 80%, and the adsorption capacity could reach 393.79 mg/g. The characterization results show that the synthesized mesoporous nitrogen-doped composite material has a large specific surface area and mesoporous structure, and the surface of the material is rich in oxygen-containing functional groups and active sites. Compared with other studies, the adsorption capacity of the material is larger, which indicates that the removal effect of Cr(VI) in this study is better. The adsorption kinetic results show that the adsorption follows a pseudo second kinetic model, and the adsorption process is a chemisorption involving electron sharing or electron exchange. This experiment designed a simple method to synthesize mesoporous nitrogen-doped composites using industrial solid waste, with raw materials from cheap and easily available industrial solid waste, and solved the dual problems of heavy metals in wastewater and solid waste, providing a new idea for the resource utilization of Fenton sludge while not producing secondary pollution.

19.
J Colloid Interface Sci ; 633: 754-763, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36493741

RESUMEN

Electrocatalytic water splitting in an alkaline medium is recognized as the promising technology to sustainably generate clean hydrogen energy via hydrogen evolution reaction (HER), while the sluggish water dissociation and subsequent *H adsorption steps greatly retarded the reaction kinetics and efficiency of the overall hydrogen evolution process. Whilst nitrogen (N)-doped carbon-based materials are attractive candidates for promoting HER activity, the facile fabrication and gaining a deeper insight into the electrocatalytic mechanism are still challenging. Herein, inspired by the Diels-Alder reaction, we precisely tailored six-membered pyridinic N and five-membered pyrrolic N sites at the edge of the carbon substrates. Comprehensive analysis validates that the participation of pyridinic N (electron-withdrawing) and pyrrolic N (electron-releasing) will induce the charge rearrangements, and further generate local electrophilic and nucleophilic domains in adjacent carbon rings, which guarantees the occurrence of water dissociation to generate protons and the subsequent adsorption of *H intermediates through electrostatic interactions, thereby facilitating the overall reaction kinetics. To this end, the optimal NC-ZnCl2-25 % electrocatalysts present excellent alkaline HER activity (η10 = 45 mV, Tafel slop of 37.7 mV dec-1) superior to commercial Pt/C.


Asunto(s)
Hidrógeno , Protones , Reacción de Cicloadición , Carbono , Nitrógeno , Pirroles , Agua
20.
Small Methods ; 7(9): e2300177, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37287373

RESUMEN

Owing to rapid property degradation after ambient exposure and incompatibility with conventional device fabrication process, electrical transport measurements on air-sensitive 2D materials have always been a big issue. Here, for the first time, a facile one-step polymer-encapsulated electrode transfer (PEET) method applicable for fragile 2D materials is developed, which showed great advantages of damage-free electrodes patterning and in situ polymer encapsulation preventing from H2 O/O2 exposure during the whole electrical measurements process. The ultrathin SmTe2 metals grown by chemical vapor deposition (CVD) are chosen as the prototypical air-sensitive 2D crystals for their poor air-stability, which will become highly insulating when fabricated by conventional lithographic techniques. Nevertheless, the intrinsic electrical properties of CVD-grown SmTe2 nanosheets can be readily investigated by the PEET method instead, showing ultralow contact resistance and high signal/noise ratio. The PEET method can be applicable to other fragile ultrathin magnetic materials, such as (Mn,Cr)Te, to investigate their intrinsic electrical/magnetic properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA