Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7217, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174533

RESUMEN

Electrically powered solitons are particle-like field configurations in out-of-equilibrium nematics that have garnered significant interest. However, their random generation and lack of controllable motion have limited their application. Here, we present a reconfigurable optoelectronic approach capable of regulating the entire lifecycle of solitons by utilizing multi-strategy digital light projection to construct delicate patterning of virtual electrode. We demonstrate that optically actuated domains with diverse geometry enable the generation of multiple solitons and further allow in-situ formation of individual soliton by matching the light pattern to its dimension. Exquisitely engineered light intensity of patterns facilitates modulation of soliton velocity and transformation of propagating direction. The utilization of a light-guided channel enables the on-demand control of soliton trajectories along customized paths. Furthermore, dynamic light patterns that vary in space and time allow for collective motion such as migration, mimicking phototaxis in biological systems. This reconfigurable manipulation strategy, grounded in the photoconductive effect, proves highly versatile and effective in directing soliton dynamics, heralding the potential for their programmable control and offering a significant advantage in multitasking scenarios.

2.
Nat Commun ; 15(1): 197, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172091

RESUMEN

Branched flows occur ubiquitously in various wave systems, when the propagating waves encounter weak correlated scattering potentials. Here we report the experimental realization of electrical tuning of the branched flow of light using a nematic liquid crystal (NLC) system. We create the physical realization of the weakly correlated disordered potentials of light via the inhomogeneous orientations of the NLC. We demonstrate that the branched flow of light can be switched on and off as well as tuned continuously through the electro-optical properties of NLC film. We further show that the branched flow can be manipulated by the polarization of the incident light due to the optical anisotropy of the NLC film. The nature of the branched flow of light is revealed via the unconventional intensity statistics and the rapid fidelity decay along the light propagation. Our study unveils an excellent platform for the tuning of the branched flow of light which creates a testbed for fundamental physics and offers a new way for steering light.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA