Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Environ Sci Technol ; 58(10): 4691-4703, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38323401

RESUMEN

The negative effects of air pollution, especially fine particulate matter (PM2.5, particles with an aerodynamic diameter of ≤2.5 µm), on human health, climate, and ecosystems are causing significant concern. Nevertheless, little is known about the contributions of emerging pollutants such as plastic particles to PM2.5 due to the lack of continuous measurements and characterization methods for atmospheric plastic particles. Here, we investigated the levels of fine plastic particles (FPPs) in PM2.5 collected in urban Shanghai at a 2 h resolution by using a novel versatile aerosol concentration enrichment system that concentrates ambient aerosols up to 10-fold. The FPPs were analyzed offline using the combination of spectroscopic and microscopic techniques that distinguished FPPs from other carbon-containing particles. The average FPP concentrations of 5.6 µg/m3 were observed, and the ratio of FPPs to PM2.5 was 13.2% in this study. The FPP sources were closely related to anthropogenic activities, which pose a potential threat to ecosystems and human health. Given the dramatic increase in plastic production over the past 70 years, this study calls for better quantification and control of FPP pollution in the atmosphere.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Ecosistema , Monitoreo del Ambiente/métodos , China , Material Particulado/análisis , Estaciones del Año , Aerosoles/análisis
2.
Anal Chem ; 94(44): 15280-15287, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36278923

RESUMEN

Nano-/microplastics (NMPs, particle diameter < 5 mm) are widespread emerging pollutants causing diverse impacts on organisms due to their sizes, shapes, and chemical properties. Despite the fast increase in NMP research, an effective method to separate and identify NMP types from environmental samples is still lacking. Here, we developed a simple and effective approach for the non-destructive extraction and separation of various types of NMPs from environmental samples by density gradient ultracentrifugation (DGU). For the first time, DGU was capable to separate various NMPs from the complex matrix with high selectivity (100%), purity (93%), and applicability. Through a gradually changing density of the density gradient medium by changing the concentrations or volumes of CsCl/water solution (from 0.00065 to 0.01989 g cm-3 mm-1), various NMPs (with particle sizes as little as 50 nm) could be extracted and separated from soil samples with high recovery (78.5-96.0%). We confirmed the effectiveness and compatibility of DGU through a correct identification of all types of NMPs separated from artificial soil samples with Raman spectroscopy, simultaneous thermal analysis (STA), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). DGU is compatible with all analytical processes compared to other existing methods with much less sample pretreatment time (0.5 h). Overall, DGU is an effective and cheap method (2.2 USD/sample) to separate NMPs from environmental samples such as soil and water and, hence, can facilitate research on NMPs related to terrestrial and marine environments as well as human health.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Plásticos/química , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis , Suelo , Agua/análisis , Ultracentrifugación
3.
Int J Mol Sci ; 23(9)2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35563424

RESUMEN

The black soldier fly (BSF), Hermetia illucens, has emerged as a promising species for waste bioconversion and source of antimicrobial proteins (AMPs). However, there is a scarcity of research on the element transformation efficiency and molecular characterization of AMPs derived from waste management. Here, food waste treatment was performed using BSF larvae (BSFL) in a C/N ratio of 21:1−10:1, with a focus on the C/N-dependent element bioconversion, AMP antimicrobial activity, and transcriptome profiling. The C-larvae transformation rates were found to be similar among C/Ns (27.0−35.5%, p = 0.109), while the N-larvae rates were different (p = 0.001), with C/N 21:1−16:1 (63.5−75.0%) being higher than C/N 14:1−10:1 (35.0−45.7%). The C/N ratio did not alter the antimicrobial spectrum of AMPs, but did affect the activities, with C/N 21:1 being significantly lower than C/N 18:1−10:1. The lysozyme genes were found to be significantly more highly expressed than the cecropin, defensin, and attacin genes in the AMP gene family. Out of 51 lysozyme genes, C/N 18:1 and C/N 16:1 up-regulated (p < 0.05) 14 and 12 genes compared with C/N 21:1, respectively, corresponding to the higher activity of AMPs. Overall, the element bioconversion efficiency and AMP expression can be enhanced through C/N ratio manipulation, and the C/N-dependent transcriptome regulation is the driving force of the AMP difference.


Asunto(s)
Dípteros , Eliminación de Residuos , Animales , Antibacterianos/farmacología , Dípteros/genética , Alimentos , Larva/genética , Muramidasa
4.
Molecules ; 27(7)2022 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35408544

RESUMEN

Industrial processing of raspberry juice and wine generates considerable byproducts of raspberry pomace. Ellagic acids/ellagitannins, being characterized by their antioxidant and antiproliferation properties, constitute the majority of polyphenolics in the pomace and are valuable for recovery. In the present study, we developed a novel procedure with sodium bicarbonate assisted extraction (SBAE) to recover ellagic acid from raspberry wine pomace. Key parameters in the procedure, i.e., sodium bicarbonate concentration, temperature, time and solid/liquid (S/L) ratio, were investigated by single factor analysis and optimized subsequently by Response Surface Methodology (RSM). Optimal parameters for the SBAE method here were found to be 1.2% (w/v) NaHCO3, 1:93 (w/v) S/L ratio, 22 min and 100 °C. Under these conditions, the ellagic acid yield was 6.30 ± 0.92 mg/g pomace with an antioxidant activity of 79.0 ± 0.96 µmol Trolox eq/g pomace (DPPH assay), which are 2.37 and 1.32 times the values obtained by extraction with methanol-acetone-water solvent, respectively. The considerable improvement in ellagic acid extraction efficiency could be highly attributed to the reactions of lipid saponification and ellagitannin hydrolysis resulted from sodium bicarbonates. The present study has established an organic solvent-free method for the extraction of ellagic acid from raspberry wine pomace, which is feasible and practical in nutraceutical applications.


Asunto(s)
Rubus , Vino , Antioxidantes/análisis , Ácido Elágico/análisis , Rubus/química , Bicarbonato de Sodio , Solventes/análisis , Vino/análisis
5.
J Environ Sci (China) ; 122: 227-235, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35717087

RESUMEN

Sulfonamides (SAs) are one of the most widely used antibiotics and their residuals in the environment could cause some negative environmental issues. Advanced oxidation such as Fenton-like reaction has been widely applied in the treatment of SAs polluted water. Degradation rates of 95%-99.7% were achieved in this work for the tested 8 SAs, including sulfisomidine, sulfameter (SME), phthalylsulfathiazole, sulfamethoxypyridazine, sulfamonomethoxine, sulfisoxazole, sulfachloropyridazine, and sulfadimethoxine, in the Fe3O4/peroxodisulfate (PDS) oxidation system after the optimization of PDS concentration and pH. Meanwhile, it was found that a lot of unknown oxidation products were formed, which brought up the uncertainty of health risks to the environment, and the identification of these unknown products was critical. Therefore, SME was selected as the model compound, from which the oxidation products were never elucidated, to identify these intermediates/products. With liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS), 10 new products were identified, in which 2-amino-5-methoxypyrimidine (AMP) was confirmed by its standard. The investigation of the oxidation process of SME indicated that most of the products were not stable and the degradation pathways were very complicated as multiple reactions, such as oxidation of the amino group, SO2 extrusion, and potential cross-reaction occurred simultaneously. Though most of the products were not verified due to the lack of standards, our results could be helpful in the evaluation of the treatment performance of SAs containing wastewater.


Asunto(s)
Sulfameter , Sulfametoxipiridazina , Antibacterianos/química , Cromatografía Liquida/métodos , Oxidación-Reducción , Sulfonamidas/química
6.
Bull Environ Contam Toxicol ; 107(4): 626-632, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33864099

RESUMEN

The toxicity of polystyrene (PS) particles of different sizes was investigated using Gram-negative Escherichia coli and Gram-positive Bacillus cereus. PS particles could inhibit the cell growth of E. coli but promote the cell growth of B. cereus, and this difference might be attributed to different composition in their cell walls and the different interactions between the two bacteria and PS particles. Direct adhesion of E. coli cells on the surface of 5 µm PS microbeads by flagella was observed, indicating the putative role of E. coli on biofilm formation of plastisphere. The regulations of malondialdehyde, lactate dehydrogenase and glutathione were similar between the two bacteria, so the difference in the toxicity effect of PS between the two bacteria was not caused by the antioxidant activity. The overall results of the present study could help to understand the responses of different bacteria to microplastic exposure.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Bacillus cereus , Escherichia coli , Plásticos , Poliestirenos , Contaminantes Químicos del Agua/análisis
7.
J Environ Sci (China) ; 101: 373-381, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33334532

RESUMEN

Nitrogen-containing organic pollutants (quinoline, pyridine and indole) are widely distributed in coking wastewater, and bioaugmentation with specific microorganisms may enhance the removal of these recalcitrant pollutants. The bioaugmented system (group B) was constructed through inoculation of two aromatics-degrading bacteria, Comamonas sp. Z1 (quinoline degrader) and Acinetobacter sp. JW (indole degrader), into the activated sludge for treatment of quinoline, indole and pyridine, and the non-bioaugmented activated sludge was used as the control (group C). Both groups maintained high efficiencies (> 94%) for removal of nitrogen-containing organic pollutants and chemical oxygen demand (COD) during the long-term operation, and group B was highly effective at the starting period and the operation stage fed with raw wastewater. High-throughput sequencing analysis indicated that nitrogen-containing organic pollutants could shape the microbial community structure, and communities of bioaugmented group B were clearly separated from those of non-bioaugmented group C as observed in non-metric multidimensional scaling (NMDS) plot. Although the inoculants did not remain their dominance in group B, bioaugmentation could induce the formation of effective microbial community, and the indigenous microbes might play the key role in removal of nitrogen-containing organic pollutants, including Dokdonella, Comamonas and Pseudoxanthomonas. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis suggested that bioaugmentation could facilitate the enrichment of functional genes related to xenobiotics biodegradation and metabolism, probably leading to the improved performance in group B. This study indicated that bioaugmentation could promote the removal of nitrogen-containing organic pollutants, which should be an effective strategy for wastewater treatment.


Asunto(s)
Contaminantes Ambientales , Microbiota , Biodegradación Ambiental , Reactores Biológicos , Nitrógeno , Filogenia , Aguas del Alcantarillado , Aguas Residuales
8.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992910

RESUMEN

Tiny changes in the mass of the sensor in a quartz crystal microbalance with dissipation monitoring (QCM-D) can be observed. However, the lack of specificity for target species has hindered the use of QCM-D. Here, molecularly imprinted polymers (MIPs) were used to modify a QCM-D sensor to provide specificity. The MIPs were formed in the presence of sodium dodecyl benzene sulfonate. Imprinted layers on Fe3O4 nanoparticles were formed using pyrrole as the functional monomer and cross-linker and methylene blue (MB) as a template. The MIPs produced were then attached to the surface of a QCM-D sensor. The MIPs-coated QCM-D sensor could recognize MB and gave a linear response in the concentration range 25 to 1.5 × 102 µg/L and a detection limit of 1.4 µg/L. The QCM-D sensor was selective for MB over structural analogs. The MIPs-coated QCM-D sensor was successfully used to detect MB in river water and seawater samples, and the recoveries were good. This is the first time MB has been detected using a QCM-D sensor. Mass is an intrinsic property of matter, so this method could easily be extended to other target species by using different MIPs.

9.
Bull Environ Contam Toxicol ; 102(6): 789-794, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30989279

RESUMEN

Marine organisms are often exposed to a mixture of various pollutants in marine environment (i.e., nanoparticles, organic pollutants). The present study investigated the potential effects of multi-walled carbon nanotubes (MWCNTs) on the toxicity of triphenyltin chloride (TPTCl). The results revealed an antagonistic interaction between MWCNTs and TPTCl on the copepod through 96 h acute exposure, which was attributed to the adsorption of TPTCl to MWCNTs and aggregation of MWCNTs in the test solutions. Results of 21 days' chronic exposure showed that the effect concentration of MWCNTs could be 100 times lower than that of acute exposure. The exposure to binary mixture of MWCNT (1.0 mg/L) and TPTCl (0.3 µg/L) caused a reduction by 94% for the 3rd time spawning and 83% for the total number of hatched nauplii. The ingestion and exterior attachment of MWCNTs to the copepod might be the main reasons causing the adverse effect in reproduction.


Asunto(s)
Nanotubos de Carbono/química , Compuestos Orgánicos de Estaño/toxicidad , Contaminantes Químicos del Agua/toxicidad , Adsorción , Animales , Organismos Acuáticos/efectos de los fármacos , Copépodos/efectos de los fármacos , Nanopartículas/toxicidad , Compuestos Orgánicos de Estaño/química , Reproducción , Contaminantes Químicos del Agua/química
10.
Anal Chem ; 90(20): 12172-12179, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30221932

RESUMEN

A multiplex-on-bead-isotope-dimethyl-labeling method was developed for the quantitative analysis of sulfonamides (SAs) in environmental water samples by liquid chromatography-high-resolution mass spectrometry (LC-HRMS). In this method, five samples could be labeled in parallel with different isotope reagents and quantified in a single LC-HRMS analysis. Magnetic solid-phase extraction (MSPE) was employed in the sample preparation to concentrate the trace-level analytes by using lab-synthesized magnetic carbon nanospheres (MCNSs). After the analytes were captured on the MCNSs, the isotope labeling was performed directly by dispersing the MCNSs in the reaction buffer (on-bead labeling). The experimental conditions for MSPE and labeling were systematically investigated. For the tested 12 SAs, a labeling efficiency of over 99% could be achieved within 20 min. The LC-HRMS separation, including equilibration, could be achieved in 6 min. By combining MSPE (enriched 200-fold), multiplex on-bead dimethyl labeling, and LC-HRMS, all the tested SAs could be reliably quantified with limits of detection (LODs) of 0.1-5 ng/L. This method was verified using fortified pond water spiked with 12 SAs (0.01-5 µg/L), and accuracies of 81-106% were achieved with good reproducibility (RSD < 10%, n = 3), which confirmed its applicability in real-sample analysis. With this method, ice samples collected at the estuary of the Daliao River in northeast China were analyzed; nine SAs (sulfanilamide, sulfapyridine, sulfamethazine, sulfamethizole, sulfachloropyridazine, sulfamethoxypyridazine, sulfameter, sulfathiazole, and sulfisoxazole) were detected at concentrations of 0-85 ng/L, and the total concentrations were in the range of 185-402 ng/L with a median value of 274 ng/L.

11.
J Sep Sci ; 39(22): 4439-4448, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27734586

RESUMEN

Molecularly imprinted polymers were synthesized using mixed tea saponins as a template and acrylamide-ß-cyclodextrin as a cofunctional monomer for the specific binding and purification of tea saponins from the defatted cake extract of Camellia oleifera. The adsorption properties of the prepared polymers were systematically evaluated including adsorption kinetics, adsorption isotherms, and selective recognition characteristics. It showed that the adsorption kinetics followed the pseudo first-order kinetic model (R2 = 0.995) with an equilibrium time of 3 h, adsorption isotherm data fitted well with the Langmuir-Freundlich model (R2 = 0.984) with an adsorption capacity of 14.23 mg/g. The relative selectivity coefficient (k´) in the presence of the analogues glycyrrhizic acid and glycyrrhetinic acid were 1.16 and 17.21, respectively. The performance of the molecularly imprinted polymers as solid-phase extraction materials was investigated and the results indicated that using acrylamide-ß-cyclodextrin as a cofunctional monomer improved both the adsorption capacity and active sites stability of the imprinted polymers. The solid-phase extraction using the polymers as packing materials was subsequently applied for the separation of tea saponins in raw C. oleifera press extract, and targets were obtained with a purity reaching 89%.


Asunto(s)
Camellia/química , Impresión Molecular , Saponinas/aislamiento & purificación , Té/química , Acrilamida/química , Adsorción , Polímeros , Extracción en Fase Sólida , beta-Ciclodextrinas/química
12.
Anal Chem ; 87(2): 1330-6, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25526384

RESUMEN

N-Nitrosamines, probable human carcinogens, are a group of disinfection byproducts under consideration for drinking water regulation. Currently, no method can determine trace levels of alkyl and tobacco-specific nitrosamines (TSNAs) of varying physical and chemical properties in water by a single analysis. To tackle this difficulty, we developed a single solid-phase extraction (SPE) method with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for the determination of 14 nitrosamines of health concern with widely differing properties. We made a cartridge composed of a vinyl/divinylbenzene polymer that efficiently concentrated the 14 nitrosamines in 100 mL of water (in contrast to 500 mL in other methods). This single SPE-HPLC-MS/MS technique provided calculated method detection limits of 0.01-2.7 ng/L and recoveries of 53-93% for the 14 nitrosamines. We have successfully demonstrated that this method can determine the presence or absence of the 14 nitrosamines in drinking water systems (eight were evaluated in Canada and the U.S.), with occurrence similar to that in other surveys. N-Nitrosodimethylamine (NDMA), N-nitrosodiphenylamine, and the TSNA 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol were identified and quantified in authentic drinking water. Formation potential (FP) tests demonstrated that NDMA and TSNA precursors were present in (1) water samples in which tobacco was leached and (2) wastewater-impacted drinking water. Our results showed that prechlorination or ozonation destroyed most of the nitrosamine precursors in water. Our new single method determination of alkylnitrosamines and TSNAs significantly reduced the time and resource demands of analysis and will enable other studies to more efficiently study precursor sources, formation mechanisms, and removal techniques. It will be useful for human exposure and health risk assessments of nitrosamines in drinking water.


Asunto(s)
Carcinógenos/análisis , Agua Potable/análisis , Nitrosaminas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Cromatografía Líquida de Alta Presión/métodos , Humanos , Límite de Detección , Fumar , Nicotiana/química
13.
Environ Sci Technol ; 49(1): 459-66, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25471701

RESUMEN

We report here that tobacco-specific nitrosamines (TSNAs) are produced from specific tobacco alkaloids during water chloramination. To identify the specific precursors for the formation of specific TSNAs in drinking water, we have developed a solid-phase extraction-liquid chromatography-tandem mass spectrometry (SPE-LC-MS/MS) method for simultaneous determination of five TSNAs and three tobacco alkaloids. Using this method, we detected nicotine (NIC) at 15.1 ng/L in a source water. Chloramination of this source water resulted in the formation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) (0.05 ng/L) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) (0.2 ng/L) along with the reduction of NIC to 1.1 ng/L, suggesting that NNK and NNAL were formed from NIC. To confirm that tobacco alkaloids are the precursors of TSNAs, we chloraminated water-leaching samples of tobacco from three brands of cigarettes and found that the formation of TSNAs coincides with the reduction of the alkaloids. Chloramination of individual alkaloids confirms that NNK and NNAL are produced from NIC, N-nitrosonornicotine (NNN) from nornicotine (NOR), and N-nitrosoanabasine (NAB) from anabasine (ANA). Furthermore, we have identified specific intermediates of these reactions and proposed potential pathways of formation of TSNAs from specific alkaloids. These results confirm that NNK and NNAL are the disinfection byproducts (DBPs) resulting from NIC in raw water.


Asunto(s)
Cloraminas/química , Agua Potable/química , Nicotiana/química , Nitrosaminas/análisis , Piridinas/análisis , Alcaloides/química , Cromatografía Liquida/métodos , Halogenación , Espectrometría de Masas , Nicotina/análogos & derivados , Nicotina/química , Nitrosaminas/síntesis química , Piridinas/síntesis química , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/síntesis química
14.
Environ Sci Technol ; 48(3): 1828-34, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24422428

RESUMEN

Tobacco-specific nitrosamines (TSNAs) exist in environmental waters; however, it is unknown whether TSNAs can be produced during water disinfection. Here we report on the investigation and evidence of TSNAs as a new class of disinfection byproducts (DBPs). Using five common TSNAs, including (methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) as the targets, we first developed a solid phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method capable of rapidly determining these TSNAs at levels as low as 0.02 ng/L in treated water. Using this highly sensitive method, we investigated the occurrence and formation potential (FP) (precursor test conducted in the presence of chloramines) of TSNAs in treated water from two wastewater treatment plants (WWTPs) and seven drinking water treatment plants (DWTPs). NNAL was detected in the FP samples, but not in the samples before the FP test, confirming NNAL as a DBP. NNK was detected in the treated wastewater before the FP test, but its concentration increased significantly after chloramination in two of three tests. Thus, NNK could be a DBP and/or a contaminant in wastewater. Moreover, these TSNAs were detected in FP tests of wastewater-impacted DWTP plant influents in 9 of 11 samples. However, TSNAs were not detected at full-scale DWTPs, except for at one DWTP with high ammonia where breakpoint chlorination was not achieved. The concentration of the sum of five TSNAs (0.3 ng/L) was 100-fold lower than NDMA, suggesting that TSNAs have a minor contribution to total nitrosamines in water. We examined several factors in the treatment process and found that chlorine or ozone may destroy TSNA precursors and granular activated carbon (GAC) treatment may remove the precursors. Further research is warranted into the efficiency of these processes at different DWTPs using sources of varying water quality.


Asunto(s)
Cromatografía Liquida/métodos , Nitrosaminas/análisis , Piridinas/análisis , Extracción en Fase Sólida/métodos , Espectrometría de Masas en Tándem/métodos , Purificación del Agua , Cloraminas , Cloro , Desinfección , Espectrometría de Masas , Ozono , Nicotiana , Agua/análisis , Calidad del Agua
15.
Chemosphere ; 357: 141938, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631498

RESUMEN

The peroxynitrite photocatalytic degradation system was considered a green, convenient, and efficient water treatment process, but not satisfying against some antibiotics, e.g. sulfonamides (SAs). To improve the photocatalytic degradation efficiency of SAs, sulfur was introduced to a magnetic Fe-MOF (Fe-metal organic framework) Prussian blue analog to achieve a heteroatomic material CuFeO@S, which was applied in heterogeneous visible light photo-assisted catalytic process with persulfate (PS) as an oxidant. The characterization results of CuFeO@S by XRD and XPS confirmed the presence of Fe3O4 (for magnetic separation), Cu+ (for activation of PS) and S2- (for narrowing the energy band and prolonging the lifetime of photo-generated electronics). Through systematic optimization of reaction conditions in CuFeO@S + PS + hv system, efficient degradation of four tested SAs was achieved in 30 min (removal rate of 97-100% for the tested 4 SAs). Moreover, the material could be magnetically recycled and reused for over 7 cycles with a removal rate of >90% for sulfamerazine. Furthermore, the removal rate of sulfamerazine in pond water reached 99% at a mineralization rate of about 34% (decrease in total organic matter), demonstrating its potential in the treatment of antibiotic-containing wastewater.


Asunto(s)
Ferrocianuros , Oxidación-Reducción , Sulfonamidas , Contaminantes Químicos del Agua , Ferrocianuros/química , Contaminantes Químicos del Agua/química , Sulfonamidas/química , Catálisis , Azufre/química , Purificación del Agua/métodos , Sulfatos/química , Luz , Estructuras Metalorgánicas/química
16.
Anal Chim Acta ; 1314: 342752, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876511

RESUMEN

Particle size is an important indicator to evaluate the environmental risk and biotoxicity of nanoplastic (NP, particle diameter <1000 nm). The methods available to determine size classes of NP in environmental samples are few and are rare to achieve efficient separation and recycling of NP with close particle sizes. Here, we show that rate-zonal centrifugation (RZC) can quickly and efficiently collect NP of different sizes based on their sedimentation coefficients. When combined with cloud-point extraction (CPE) and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), our method can quantify three NP particle-size classes separately (including 100 nm, 300 nm, and 600 nm) in aqueous samples with high recovery (81.4 %-89.4 %), limits of detections (LODs, 33.5-53.4 µg/L), and limits of quantifications (LOQs, 110.6-167.2 µg/L). Compared with the conventional sample pretreatment process, our method can effectively extract and determine the NP with different sizes. Our approach is highly scalable and can be effectively applied to NP in a wide range of aquatic environments. Meanwhile, our approach is highly scalable to incorporate diverse assays to study the environmental behaviours and ecological risks of NP.

17.
Sci Total Environ ; 917: 169306, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38103614

RESUMEN

Microcystins (MCs) are the most common cyanobacterial toxins. Epidemiological investigation showed that exposure to MCs can cause gastro-intestinal symptoms, gastroenteritis and gastric cancer. MCs can also accumulate in and cause histopathological damage to stomach. However, the exact mechanisms by which MCs cause gastric injury were unclear. In this study, Wistar rats were administrated 50, 75 or 100 µg microcystin-LR (MC-LR)/kg, body mass (bm) via tail vein, and histopathology, response of anti-oxidant system and the proteome of gastric tissues at 24 h after exposure were studied. Bleeding of fore-stomach and gastric corpus, inflammation and necrosis in gastric corpus and exfoliation of mucosal epithelial cells in gastric antrum were observed following acute MC-LR exposure. Compared with controls, activities of superoxide dismutase (SOD) were significantly greater in gastric tissues of exposed rats, while activities of catalase (CAT) were less in rats administrated 50 µg MC-LR/kg, bm, and concentrations of glutathione (GSH) and malondialdehyde (MDA) were greater in rats administrated 75 or 100 µg MC-LR/kg, bm. These results indicated that MC-LR could disrupt the anti-oxidant system and cause oxidative stress. The proteomic results revealed that MC-LR could affect expressions of proteins related to cytoskeleton, immune system, gastric functions, and some signaling pathways, including platelet activation, complement and coagulation cascades, and ferroptosis. Quantitative real-time PCR (qRT-PCR) analysis showed that transcriptions of genes for ferroptosis and gastric function were altered, which confirmed results of proteomics. Overall, this study illustrated that MC-LR could induce gastric dysfunction, and ferroptosis might be involved in MC-LR-induced gastric injury. This study provided novel insights into mechanisms of digestive diseases induced by MCs.


Asunto(s)
Antioxidantes , Toxinas Marinas , Microcistinas , Ratas , Animales , Antioxidantes/metabolismo , Microcistinas/toxicidad , Microcistinas/metabolismo , Proteómica , Hígado/metabolismo , Ratas Wistar , Estrés Oxidativo , Glutatión/metabolismo , Estómago
18.
Environ Sci Technol ; 47(7): 3275-82, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23410080

RESUMEN

Halobenzoquinones (HBQs) are a class of disinfection byproducts (DBPs) of health relevance. In this study, we aimed to uncover which HBQs are present in swimming pools. To achieve this goal, we developed a new method capable of determining eight HBQs while overcoming matrix effects to achieve reliable quantification. The method provided reproducible and quantitative recovery (67-102%) and detection limits of 0.03-1.2 ng/L for all eight HBQs. Using this new method, we investigated water samples from 10 swimming pools and found 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) in all the pools at concentrations of 19-299 ng/L, which was as much as 100 times higher than its concentration in the input tap water (1-6 ng/L). We also identified 2,3,6-trichloro-(1,4)benzoquinone (TriCBQ), 2,3-dibromo-5,6-dimethyl-(1,4)benzoquinone (DMDBBQ), and 2,6-dibromo-(1,4)benzoquinone (2,6-DBBQ) in some swimming pools at concentrations of <0.1-11.3, <0.05-0.7, and <0.05-3.9 ng/L, respectively, but not in the input tap water. We examined several factors to determine why HBQ concentrations in pools were much higher than in the input tap water. Higher dissolved organic carbon (DOC), higher doses of chlorine and higher temperatures enhanced the formation of HBQs in the pools. In addition, we conducted laboratory disinfection experiments and discovered that personal care products (PCPs) such as lotions and sunscreens can serve as precursors to form additional HBQs, such as TriCBQ, 2,6-dichloro-3-methyl-(1,4)benzoquinone (DCMBQ), and 2,3,5,6-tetrabromo-(1,4)benzoquinone (TetraB-1,4-BQ). These results explained why some HBQs existed in swimming pools but not in the input water. This study presents the first set of occurrence data, identification of new HBQ DBPs, and the factors for their enhanced formation in the swimming pools.


Asunto(s)
Benzoquinonas/análisis , Productos Domésticos/análisis , Hidrocarburos Halogenados/análisis , Piscinas , Contaminantes Químicos del Agua/análisis , Adolescente , Adulto , Benzoquinonas/química , Niño , Cromatografía Liquida , Desinfección , Femenino , Halogenación , Humanos , Hidrocarburos Halogenados/química , Iones , Masculino , Espectrometría de Masas , Extracción en Fase Sólida , Termodinámica , Contaminantes Químicos del Agua/química , Abastecimiento de Agua , Adulto Joven
19.
Environ Sci Technol ; 47(9): 4426-33, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23560392

RESUMEN

Halobenzoquinones (HBQs) are a group of emerging disinfection byproducts (DBPs) found in treated drinking water. Because the use of UV treatment for disinfection is becoming more widespread, it is important to understand how the HBQs may be removed or changed due to UV irradiation. Water samples containing four HBQs, 2,6-dichloro-1,4-benzoquinone (DCBQ), 2,3,6-trichloro-1,4-benzoquinone (TCBQ), 2,6-dichloro-3-methyl-1,4-benzoquinone (DCMBQ), and 2,6-dichloro-1,4-benzoquinone (DBBQ), were treated using a modified bench scale collimated beam device, mimicking UV treatment. Water samples before and after UV irradiation were analyzed for the parent compounds and products using a high performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) method. As much as 90% of HBQs (0.25 nmol L(-1)) in both pure water and tap water were transformed to other products after UV254 irradiation at 1000 mJ cm(-2). The major products of the four HBQs were identified as 3-hydroxyl-2,6-dichloro-1,4-benzoquinone (OH-DCBQ) from DCBQ, 5-hydroxyl-2,6-dichloro-3-methyl-1,4-benzoquinone (OH-DCMBQ) from DCMBQ, 5-hydroxyl-2,3,6-trichloro-1,4-benzoquinone (OH-TCBQ) from TCBQ, and 3-hydroxyl-2,6-dibromo-1,4-benzoquinone (OH-DBBQ) from DBBQ. These four OH-HBQs were further modified to monohalogenated benzoquinones when the UV dose was higher than 200 mJ cm(-2). These results suggested possible pathways of UV-induced transformation of HBQs to other compounds. Under the UV dose commonly used in water treatment plants, it is likely that HBQs are partially converted to other halo-DBPs. The occurrence and toxicity of these mixed DBPs warrant further investigation to understand whether they pose a health risk.


Asunto(s)
Benzoquinonas/química , Agua Potable/química , Halógenos/química , Rayos Ultravioleta , Cromatografía Líquida de Alta Presión , Espectrofotometría Ultravioleta , Espectrometría de Masas en Tándem
20.
Chempluschem ; 88(7): e202300247, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37414731

RESUMEN

Phenols pose a great threat to human and environment due to their high toxicity and low bio-degradability. Therefore, the development of a rapid and sensitive detection method for multiple phenols is of great importance. Here, a colorimetric detection method based on Fe3 O4 /SnS2 composites was established for the detection and discrimination of ten phenols for the first time. The results demonstrated that the incorporation of the photo catalyst SnS2 significantly improved the peroxidase-like activity of Fe3 O4 , leading to an enhancing efficiency of the colorimetric detection method. The developed method was capable of detecting phenol within a concentration range of 0.5-2000 µM, with detection limit as low as 0.06 µM. This method was successfully applied to detect total phenols in samples obtained from two sewage treatment plants and seawater. Furthermore, by employing principal component analysis, the established colorimetric method enabled the simultaneous discrimination of all ten phenols. The performance was further evaluated by accurately identifying binary or ternary mixtures of phenols, and even identifying the type of phenol in 10 unknown samples containing one of the ten phenols. These findings highlight the potential of the Fe3 O4 /SnS2 composite as a promising candidate for the simultaneous detection of multiple phenols in liquid samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA