Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 163(4): 1026-36, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26544945

RESUMEN

The magnitude of cardiomyocyte generation in the adult heart has been heavily debated. A recent report suggests that during mouse preadolescence, cardiomyocyte proliferation leads to a 40% increase in the number of cardiomyocytes. Such an expansion would change our understanding of heart growth and have far-reaching implications for cardiac regeneration. Here, using design-based stereology, we found that cardiomyocyte proliferation accounted for 30% of postnatal DNA synthesis; however, we were unable to detect any changes in cardiomyocyte number after postnatal day 11. (15)N-thymidine and BrdU analyses provided no evidence for a proliferative peak in preadolescent mice. By contrast, cardiomyocyte multinucleation comprises 57% of postnatal DNA synthesis, followed by cardiomyocyte nuclear polyploidisation, contributing with 13% to DNA synthesis within the second and third postnatal weeks. We conclude that the majority of cardiomyocytes is set within the first postnatal week and that this event is followed by two waves of non-replicative DNA synthesis. This Matters Arising paper is in response to Naqvi et al. (2014), published in Cell. See also the associated Correspondence by Soonpaa et al. (2015), and the response by Naqvi et al. (2015), published in this issue.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Corazón/crecimiento & desarrollo , Miocitos Cardíacos/citología , Animales , Masculino
2.
Nature ; 617(7960): 386-394, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37100912

RESUMEN

Inflammation is a complex physiological process triggered in response to harmful stimuli1. It involves cells of the immune system capable of clearing sources of injury and damaged tissues. Excessive inflammation can occur as a result of infection and is a hallmark of several diseases2-4. The molecular bases underlying inflammatory responses are not fully understood. Here we show that the cell surface glycoprotein CD44, which marks the acquisition of distinct cell phenotypes in the context of development, immunity and cancer progression, mediates the uptake of metals including copper. We identify a pool of chemically reactive copper(II) in mitochondria of inflammatory macrophages that catalyses NAD(H) redox cycling by activating hydrogen peroxide. Maintenance of NAD+ enables metabolic and epigenetic programming towards the inflammatory state. Targeting mitochondrial copper(II) with supformin (LCC-12), a rationally designed dimer of metformin, induces a reduction of the NAD(H) pool, leading to metabolic and epigenetic states that oppose macrophage activation. LCC-12 interferes with cell plasticity in other settings and reduces inflammation in mouse models of bacterial and viral infections. Our work highlights the central role of copper as a regulator of cell plasticity and unveils a therapeutic strategy based on metabolic reprogramming and the control of epigenetic cell states.


Asunto(s)
Plasticidad de la Célula , Cobre , Inflamación , Transducción de Señal , Animales , Ratones , Cobre/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , NAD/metabolismo , Transducción de Señal/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Peróxido de Hidrógeno/metabolismo , Epigénesis Genética/efectos de los fármacos , Metformina/análogos & derivados , Oxidación-Reducción , Plasticidad de la Célula/efectos de los fármacos , Plasticidad de la Célula/genética , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética
3.
Physiol Plant ; 176(1): e14223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38383937

RESUMEN

We previously provided evidence for the contribution of pyoverdine to the iron nutrition of Arabidopsis. In the present article, we further analyze the mechanisms and physiology of the adaptations underlying plant iron nutrition through Fe(III)-pyoverdine (Fe(III)-pvd). An integrated approach combining microscopy and nanoscale secondary ion mass spectrometry (NanoSIMS) on plant samples was adopted to localize pyoverdine in planta and assess the impact of this siderophore on the plant iron status and root cellular morphology. The results support a possible plant uptake mechanism of the Fe(III)-pvd complex by epidermal root cells via a non-reductive process associated with the presence of more vesicles. Pyoverdine was transported to the central cylinder via the symplastic and/or trans-cellular pathway(s), suggesting a possible root-to-shoot translocation. All these processes led to enhanced plant iron nutrition, as previously shown. Overall, these findings suggest that bacterial siderophores contribute to plant iron uptake and homeostasis.


Asunto(s)
Arabidopsis , Hierro , Sideróforos/química , Transporte Biológico , Compuestos Férricos
4.
Nanomedicine ; 50: 102676, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37084803

RESUMEN

Clinical trials incorporating metallic nanoparticles (NPs) have recently begun. Radiotherapy planning does not take into account NPs concentrations observed in the patients' target volumes. In the framework of the NANOCOL clinical trial including patients treated for locally advanced cervical cancers, this study proposes a complete method to evaluate the radiation-induced biological effects of NPs. For this, calibration phantom was developed and MRI sequences with variable flip angles were acquired. This process allowed the quantification of NPs in the tumor of 4 patients, which was compared to the results of mass spectrometry obtained from 3 patient biopsies. The concentration of the NPs was reproduced in 3D cell models. Based on clonogenic assays, the radio-enhancement effects were quantified for radiotherapy and brachytherapy, and the impact in terms of local control was evaluated. T1 signal change in GTVs revealed NPs accumulation ∼12.4 µmol/L, in agreement with mass spectrometry. Radio-enhancement effects of about 15 % at 2 Gy were found for both modalities, with a positive impact on local tumor control. Even if further follow-up of patients in this and subsequent clinical trials will be necessary to assess the reliability of this proof of concept, this study opens the way to the integration of a dose modulation factor to better take into account the impact of NPs in radiotherapy treatment.


Asunto(s)
Braquiterapia , Nanopartículas del Metal , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/radioterapia , Neoplasias del Cuello Uterino/patología , Reproducibilidad de los Resultados , Braquiterapia/métodos , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Imagen por Resonancia Magnética/métodos , Dosificación Radioterapéutica
5.
Nature ; 493(7432): 433-6, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23222518

RESUMEN

Although recent studies have revealed that heart cells are generated in adult mammals, the frequency of generation and the source of new heart cells are not yet known. Some studies suggest a high rate of stem cell activity with differentiation of progenitors to cardiomyocytes. Other studies suggest that new cardiomyocytes are born at a very low rate, and that they may be derived from the division of pre-existing cardiomyocytes. Here we show, by combining two different pulse-chase approaches--genetic fate-mapping with stable isotope labelling, and multi-isotope imaging mass spectrometry--that the genesis of cardiomyocytes occurs at a low rate by the division of pre-existing cardiomyocytes during normal ageing, a process that increases adjacent to areas of myocardial injury. We found that cell cycle activity during normal ageing and after injury led to polyploidy and multinucleation, but also to new diploid, mononucleate cardiomyocytes. These data reveal pre-existing cardiomyocytes as the dominant source of cardiomyocyte replacement in normal mammalian myocardial homeostasis as well as after myocardial injury.


Asunto(s)
Corazón , Miocardio/citología , Miocitos Cardíacos/citología , Regeneración , Envejecimiento/fisiología , Animales , Ciclo Celular , ADN/biosíntesis , Femenino , Homeostasis , Marcaje Isotópico , Masculino , Mamíferos , Espectrometría de Masas , Ratones , Mioblastos Cardíacos/citología , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Poliploidía
6.
Bioorg Med Chem ; 26(20): 5510-5530, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30309671

RESUMEN

The TAM kinase family arises as a new effective and attractive therapeutic target for cancer therapy, autoimmune and viral diseases. A series of 2,6-disubstituted imidazo[4,5-b]pyridines were designed, synthesized and identified as highly potent TAM inhibitors. Despite remarkable structural similarities within the TAM family, compounds 28 and 25 demonstrated high activity and selectivity in vitro against AXL and MER, with IC50 value of 0.77 nM and 9 nM respectively and a 120- to 900-fold selectivity. We also observed an unexpected nuclear localization for compound 10Bb, thanks to nanoSIMS technology, which could be correlated to the absence of cytotoxicity on three different cancer cell lines being sensitive to TAM inhibition.


Asunto(s)
Imidazoles/química , Imidazoles/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Células A549 , Diseño de Fármacos , Humanos , Imidazoles/síntesis química , Imidazoles/farmacocinética , Modelos Moleculares , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/síntesis química , Piridinas/farmacocinética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
7.
PLoS Pathog ; 10(2): e1003928, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586151

RESUMEN

Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes.


Asunto(s)
Asparagina/metabolismo , Macrófagos/microbiología , Mycobacterium tuberculosis/metabolismo , Nitrógeno/metabolismo , Fagosomas/metabolismo , Estrés Fisiológico , Tuberculosis/metabolismo , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Immunoblotting , Espectrometría de Masas , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Microscopía Inmunoelectrónica , Fagosomas/microbiología
8.
Nucleic Acids Res ; 42(13): 8678-91, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25013173

RESUMEN

The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Polirribosomas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico , Animales , Células Cultivadas , Citoplasma/química , Gránulos Citoplasmáticos/química , ADN de Cadena Simple/metabolismo , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Inhibidores de Proteasoma/farmacología , Multimerización de Proteína , Transporte de Proteínas , Proteínas/análisis , Puromicina/farmacología , ARN/análisis , ARN Mensajero/fisiología , Ratas
9.
Nat Chem Biol ; 9(11): 674-6, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24077180

RESUMEN

Here we identify the amino acid transporter AnsP1 as the unique aspartate importer in the human pathogen Mycobacterium tuberculosis. Metabolomic analysis of a mutant with an inactive AnsP1 revealed that the transporter is essential for M. tuberculosis to assimilate nitrogen from aspartate. Virulence of the AnsP1 mutant is impaired in vivo, revealing that aspartate is a primary nitrogen source required for host colonization by the tuberculosis bacillus.


Asunto(s)
Ácido Aspártico/metabolismo , Mycobacterium tuberculosis/metabolismo , Nitrógeno/metabolismo , Transportador 1 de Aminoácidos Excitadores/genética , Transportador 1 de Aminoácidos Excitadores/metabolismo
10.
Invest New Drugs ; 32(4): 587-97, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24691673

RESUMEN

We previously selected two melanin-targeting radioligands [(125)I]ICF01035 and [(125)I]ICF01040 for melanoma-targeted (125)I radionuclide therapy according to their pharmacological profile in mice bearing B16F0 tumors. Here we demonstrate in vitro that these compounds present different radiotoxicities in relation to melanin and acidic vesicle contents in B16F0, B16F0 PTU and A375 cell lines. ICF01035 is effectively observed in nuclei of achromic (A375) melanoma or in melanosomes of melanized melanoma (B16F0), while ICF01040 stays in cytoplasmic vesicles in both cells. [(125)I]ICF01035 induced a similar survival fraction (A50) in all cell lines and led to a significant decrease in S-phase cells in amelanotic cell lines. [(125)I]ICF01040 induced a higher A50 in B16 cell lines compared to [(125)I]ICF01035 ones. [(125)I]ICF01040 induced a G2/M blockade in both A375 and B16F0 PTU, associated with its presence in cytoplasmic acidic vesicles. These results suggest that the radiotoxicity of [(125)I]ICF01035 and [(125)I]ICF01040 are not exclusively reliant on DNA alterations compatible with γ rays but likely result from local dose deposition (Auger electrons) leading to toxic compound leaks from acidic vesicles. In vivo, [(125)I]ICF01035 significantly reduced the number of B16F0 lung colonies, enabling a significant increase in survival of the treated mice. Targeting melanosomes or acidic vesicles is thus an option for future melanoma therapy.


Asunto(s)
Acridinas/administración & dosificación , Radioisótopos de Yodo/administración & dosificación , Melanoma Experimental/dietoterapia , Melanoma Experimental/tratamiento farmacológico , Radiofármacos/administración & dosificación , Acridinas/metabolismo , Animales , Línea Celular Tumoral , Electrones , Humanos , Radioisótopos de Yodo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Radiofármacos/metabolismo
11.
Microsc Microanal ; 20(2): 577-81, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24548344

RESUMEN

In situ microanalysis of solid samples is often performed using secondary ion mass spectrometry (SIMS) with a submicron ion probe. The destructive nature of the method makes it mandatory to prevent information loss by using instruments combining efficient collection of secondary ions and a mass spectrometer with parallel detection capabilities. The NanoSIMS meets those requirements with a magnetic spectrometer but its mass selectivity has to be improved for accessing opportunities expected from polyatomic secondary ions. We show here that it is possible to perform D/H ratio measurement images using 12CD-/12CH-, 16OD-/16OH-, or 12C2D-/12C2H- ratios. These polyatomic species allow simultaneous recording of D/H ratios and isotopic compositions of heavier elements like 15N/14N (via 12C15N-/12C14N-) and they provide a powerful tool to select the phase of interest (e.g., mineral versus organics). We present high mass resolution spectra and an example of isotopic imaging where D/H ratios were obtained via the 12C2D-/12C2H- ratio with 12C2D- free from neighboring mass interferences. Using an advanced mass resolution protocol, a "conventional" mass resolving power of 25,000 can be achieved. Those results open many perspectives for isotopic imaging at a fine scale in biology, material science, geochemistry, and cosmochemistry.

12.
Proc Natl Acad Sci U S A ; 107(27): 12263-8, 2010 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-20566879

RESUMEN

Intracellular magnetite crystal formation by magnetotactic bacteria has emerged as a powerful model for investigating the cellular and molecular mechanisms of biomineralization, a process common to all branches of life. Although magnetotactic bacteria are phylogenetically diverse and their crystals morphologically diverse, studies to date have focused on a few, closely related species with similar crystal habits. Here, we investigate the process of magnetite biomineralization in Desulfovibrio magneticus sp. RS-1, the only reported species of cultured magnetotactic bacteria that is outside of the alpha-Proteobacteria and that forms bullet-shaped crystals. Using a variety of high-resolution imaging and analytical tools, we show that RS-1 cells form amorphous, noncrystalline granules containing iron and phosphorus before forming magnetite crystals. Using NanoSIMS (dynamic secondary ion mass spectroscopy), we show that the iron-phosphorus granules and the magnetite crystals are likely formed through separate cellular processes. Analysis of the cellular ultrastructure of RS-1 using cryo-ultramicrotomy, cryo-electron tomography, and tomography of ultrathin sections reveals that the magnetite crystals are not surrounded by membranes but that the iron-phosphorus granules are surrounded by membranous compartments. The varied cellular paths for the formation of these two minerals lead us to suggest that the iron-phosphorus granules constitute a distinct bacterial organelle.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Desulfovibrio/metabolismo , Hierro/metabolismo , Fósforo/metabolismo , Microscopía por Crioelectrón , Cristalización , Gránulos Citoplasmáticos/química , Desulfovibrio/química , Desulfovibrio/ultraestructura , Tomografía con Microscopio Electrónico , Óxido Ferrosoférrico/química , Magnetosomas/metabolismo , Magnetosomas/ultraestructura , Microscopía Electrónica de Transmisión , Minerales/química , Periplasma/metabolismo , Periplasma/ultraestructura
13.
Front Neurosci ; 17: 1274607, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869505

RESUMEN

Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly.

14.
J Neurochem ; 123(2): 325-36, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22881289

RESUMEN

The mechanisms responsible for pathological iron deposition in the aging and degenerating mammalian CNS remain poorly understood. The stress protein, HO-1 mediates the degradation of cellular heme to biliverdin/bilirubin, free iron, and CO and is up-regulated in the brains of persons with Alzheimer's disease and Parkinson's disease. HO-1 induction in primary astroglial cultures promotes deposition of non-transferrin iron, mitochondrial damage and macroautophagy, and predisposes cocultured neuronal elements to oxidative injury. To gain a better appreciation of the role of glial HO-1 in vivo, we probed for aberrant brain iron deposition using Perls' method and dynamic secondary ion mass spectrometry in novel, conditional GFAP.HMOX1 transgenic mice that selectively over-express human HO-1 in the astrocytic compartment. At 48 weeks, the GFAP.HMOX1 mice exhibited increased deposits of glial iron in hippocampus and other subcortical regions without overt changes in iron-regulatory and iron-binding proteins relative to age-matched wild-type animals. Dynamic secondary ion mass spectrometry revealed abundant FeO⁻ signals in the transgenic, but not wild-type, mouse brain that colocalized to degenerate mitochondria and osmiophilic cytoplasmic inclusions (macroautophagy) documented by TEM. Sustained up-regulation of HO-1 in astrocytes promotes pathological brain iron deposition and oxidative mitochondrial damage characteristic of Alzheimer's disease-affected neural tissues. Curtailment of glial HO-1 hyperactivity may limit iron-mediated cytotoxicity in aging and degenerating neural tissues.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/biosíntesis , Hierro/metabolismo , Regulación hacia Arriba/fisiología , Animales , Astrocitos/patología , Encéfalo/patología , Hemo-Oxigenasa 1/genética , Humanos , Sobrecarga de Hierro/metabolismo , Ratones , Ratones Transgénicos , Regulación hacia Arriba/genética
15.
Lab Chip ; 22(3): 652-653, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34918015

RESUMEN

Correction for 'Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D in vitro platform' by Saba Goodarzi et al., Lab Chip, 2021, 21, 2495-2510, DOI: 10.1039/D1LC00192B.

16.
J Theor Biol ; 289: 90-5, 2011 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21840322

RESUMEN

Microbes in natural settings typically live attached to surfaces in complex communities called biofilms. Despite the many advantages of biofilm formation, communal living forces microbes to compete with one another for resources. Here we combine mathematical models with stable isotope techniques to test a reaction-diffusion model of competition in a photosynthetic biofilm. In this model, a nutrient is transported through the mat by diffusion and is consumed at a rate proportional to its local concentration. When the nutrient is supplied from the surface of the biofilm, the balance between diffusion and consumption gives rise to gradients of nutrient availability, resulting in gradients of nutrient uptake. To test this model, a biofilm was incubated for a fixed amount of time with an isotopically labeled nutrient that was incorporated into cellular biomass. Thus, the concentration of labeled nutrient in a cell is a measure of the mean rate of nutrient incorporation over the course of the experiment. Comparison of this measurement to the solution of the reaction-diffusion model in the biofilm confirms the presence of gradients in nutrient uptake with the predicted shape. The excellent agreement between theory and experiment lends strong support to this one-parameter model of reaction and diffusion of nutrients in a biofilm. Having validated this model empirically, we discuss how these dynamics may arise from diffusion through a reactive heterogeneous medium. More generally, this result identifies stable isotope techniques as a powerful tool to test quantitative models of chemical transport through biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Modelos Biológicos , Biomasa , Isótopos de Carbono/farmacocinética , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Difusión , Espectrometría de Masas/métodos , Fotosíntesis
17.
Proc Natl Acad Sci U S A ; 105(46): 17648-53, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-18936486

RESUMEN

We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, NJ. Aside from previously described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 microm long and hexaoctahedral prisms up to 1.4 microm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability--a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming--drove diversification of magnetite-forming organisms, likely including eukaryotes.


Asunto(s)
Óxido Ferrosoférrico/química , Sedimentos Geológicos/química , Silicatos de Aluminio/análisis , Arcilla , Ambiente , Óxido Ferrosoférrico/metabolismo , Sedimentos Geológicos/microbiología , Historia Antigua , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Isótopos de Oxígeno , Factores de Tiempo
18.
Microorganisms ; 9(12)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34946198

RESUMEN

Arbuscular mycorrhizal fungi are obligate symbionts of land plants; furthermore, some of the species harbor endobacteria. Although the molecular approach increased our knowledge of the diversity and origin of the endosymbiosis and its metabolic possibilities, experiments to address the functions of the fungal host have been limited. In this study, a C flow of the fungus to the bacteria was investigated. Onion seedlings colonized with Gigaspora margarita, possessing Candidatus Glomeribacter gigasporarum (CaGg, Gram-negative, resides in vacuole) and Candidatus Moeniiplasma glomeromycotorum (CaMg, Gram-positive, resides in the cytoplasm,) were labelled with 13CO2. The 13C localization within the mycorrhiza was analyzed using high-resolution secondary ion mass spectrometry (SIMS). Correlative TEM-SIMS analysis of the fungal cells revealed that the 13C/12C ratio of CaGg was the lowest among CaMg and mitochondria and was the highest in the cytoplasm. By contrast, the plant cells, mitochondria, plastids, and fungal cytoplasm, which are contributors to the host, showed significantly higher 13C enrichment than the host cytoplasm. The C allocation patterns implied that CaMg has a greater impact than CaGg on G. margarita, but both seemed to be less burdensome to the host fungus in terms of C cost.

19.
Lab Chip ; 21(13): 2495-2510, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34110341

RESUMEN

The huge gap between 2D in vitro assays used for drug screening and the in vivo 3D physiological environment hampered reliable predictions for the route and accumulation of nanotherapeutics in vivo. For such nanotherapeutics, multi-cellular tumour spheroids (MCTS) are emerging as a good alternative in vitro model. However, the classical approaches to produce MCTS suffer from low yield, slow process, difficulties in MCTS manipulation and compatibility with high-magnification fluorescence optical microscopy. On the other hand, spheroid-on-chip set-ups developed so far require a practical knowledge of microfluidics difficult to transfer to a cell biology laboratory. We present here a simple yet highly flexible 3D model microsystem consisting of agarose-based microwells. Fully compatible with the multi-well plate format conventionally used in cell biology, our simple process enables the formation of hundreds of reproducible spheroids in a single pipetting. Immunostaining and fluorescence imaging including live high-resolution optical microscopy can be performed in situ, with no manipulation of spheroids. As a proof of principle of the relevance of such an in vitro platform for nanotherapeutic evaluation, this study investigates the kinetics and localisation of nanoparticles within colorectal cancer MCTS cells (HCT-116). The nanoparticles chosen are sub-5 nm ultrasmall nanoparticles made of polysiloxane and gadolinium chelates that can be visualized in MRI (AGuIX®, currently implicated in clinical trials as effective radiosensitizers for radiotherapy) and confocal microscopy after addition of Cy5.5. We show that the amount of AGuIX® nanoparticles within cells is largely different in 2D and 3D. Using our flexible agarose-based microsystems, we are able to resolve spatially and temporally the penetration and distribution of AGuIX® nanoparticles within MCTS. The nanoparticles are first found in both extracellular and intracellular space of MCTS. While the extracellular part is washed away after a few days, we evidenced intracellular localisation of AGuIX®, mainly within the lysosomal compartment, but also occasionally within mitochondria. Hence, our agarose-based microsystem appears as a promising 3D in vitro user-friendly platform for investigation of nanotherapeutic transport, ahead of in vivo studies.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Hidrogeles , Microscopía Confocal , Esferoides Celulares
20.
ISME J ; 15(10): 3062-3075, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33953365

RESUMEN

Algal polysaccharides constitute a diverse and abundant reservoir of organic matter for marine heterotrophic bacteria, central to the oceanic carbon cycle. We investigated the uptake of alginate, a major brown macroalgal polysaccharide, by microbial communities from kelp-dominated coastal habitats. Congruent with cell growth and rapid substrate utilization, alginate amendments induced a decrease in bacterial diversity and a marked compositional shift towards copiotrophic bacteria. We traced 13C derived from alginate into specific bacterial incorporators and quantified the uptake activity at the single-cell level, using halogen in situ hybridization coupled to nanoscale secondary ion mass spectrometry (HISH-SIMS) and DNA stable isotope probing (DNA-SIP). Cell-specific alginate uptake was observed for Gammaproteobacteria and Flavobacteriales, with carbon assimilation rates ranging from 0.14 to 27.50 fg C µm-3 h-1. DNA-SIP revealed that only a few initially rare Flavobacteriaceae and Alteromonadales taxa incorporated 13C from alginate into their biomass, accounting for most of the carbon assimilation based on bulk isotopic measurements. Functional screening of metagenomic libraries gave insights into the genes of alginolytic Alteromonadales active in situ. These results highlight the high degree of niche specialization in heterotrophic communities and help constraining the quantitative role of polysaccharide-degrading bacteria in coastal ecosystems.


Asunto(s)
Flavobacteriaceae , Gammaproteobacteria , Microbiota , Flavobacterium , Gammaproteobacteria/genética , Polisacáridos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA