Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioorg Med Chem ; 39: 116157, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33895704

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection in young children, and specific treatment for RSV infections remains unavailable. We herein reported a series of substituted N-(4-amino-2-chlorophenyl)-5-chloro-2-hydroxybenzamide analogues as potent RSV inhibitors. Among them, six low cytotoxic compounds (11, 12, 15, 22, 26, and 28) have been identified and selected to study associated inhibitory mechanisms. All these compounds suppressed not only the viral replication but also RSV-induced IRF3 and NF-κB activation and associated production of cytokines/chemokines. The two most potent compounds (15 and 22) were selected for further molecular mechanism studies associated with their suppression effect on RSV-activated IRF3 and NF-κB. These two compounds decreased RSV-induced IRF3 phosphorylation at serine 396 and p65 phosphorylation at serine 536 at both early and late infection phases. In addition, compound 22 also inhibited RSV-induced p65 phosphorylation at serine 276 at the late phase of RSV infection.


Asunto(s)
Antivirales/farmacología , Benzamidas/química , Benzamidas/farmacología , Inflamación/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Células A549 , Benzamidas/uso terapéutico , Humanos , Inflamación/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Virus Sincitiales Respiratorios/fisiología
2.
J Med Virol ; 92(12): 2946-2954, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32073159

RESUMEN

Human metapneumovirus (HMPV) is a leading cause of lower respiratory tract infection (LRTI) in pediatric and geriatric populations. We recently found that two PDZ-binding motifs of the M2-2 protein, 29-DEMI-32 and 39-KEALSDGI-46, play a significant role in mediating HMPV immune evasion in airway epithelial cells (AECs). However, their role in the overall pulmonary responses to HMPV infection has not been investigated. In this study, we found that two recombinant HMPVs (rHMPV) lacking the individual M2-2 PDZ-binding motif are attenuated in mouse lungs. Mice infected with mutants produce more cytokines/chemokines in bronchoalveolar lavage (BAL) fluid compared to mice infected with wild-type rHMPV. In addition, both mutants are able to enhance the pulmonary recruitment of dendritic cells (DCs) and T cells and induce effective protections against the HMPV challenge. The DC maturation is also significantly improved by the motif mutation. Taken together, our data provide proof-of-principle for two live-attenuated M2-2 mutants to be promising HMPV vaccine candidates that are effective in inducing higher pulmonary innate immunity and generating protection against HMPV infection.

3.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33233493

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in infants, the elderly, and immune-compromised patients. It is also a significant contributor to upper respiratory tract infection in the pediatric population. However, its disease mechanisms are still largely unknown. We have recently shown that a tRNA-derived RNA fragment (tRF) from the 5'-end of mature tRNA encoding GluCTC (tRF5-GluCTC), a recently discovered non-coding RNA, is functionally important for RSV replication and host gene regulation at the post-transcriptional level. However, how tRF5-GluCTC carries out the gene regulation is not fully known. In this study, we found that tRF5-GluCTC has impaired gene trans-silencing function in cells deficient of AGO1 or 4, while AGO2 and 3 seem not involved in tRF5-GluCTC-mediated gene regulation. By pulling down individual AGO protein, we discovered that tRF5-GluCTC is detectable only in the AGO4 complex, confirming the essential role of AGO4 in gene regulation and also suggesting that AGO1 contributes to the gene trans-silencing activity of tRF5-GluCTC in an atypical way. We also found that the P protein of RSV is associated with both AGO1 and 4 and AGO4 deficiency leads to reduced infectious viral particles. In summary, this study demonstrates the importance of AGO1 and 4 in mediating the gene trans-silencing function of tRF5-GluCTC.


Asunto(s)
Proteínas Argonautas/genética , Factores Eucarióticos de Iniciación/genética , Silenciador del Gen , ARN de Transferencia/genética , ARN no Traducido/genética , Virus Sincitial Respiratorio Humano/genética , Células A549 , Proteínas Argonautas/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Genes Reporteros , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Luciferasas/genética , Luciferasas/metabolismo , ARN de Transferencia/metabolismo , ARN no Traducido/metabolismo , Virus Sincitial Respiratorio Humano/metabolismo , Transducción de Señal , Carga Viral , Proteínas Estructurales Virales/genética , Proteínas Estructurales Virales/metabolismo , Replicación Viral
4.
J Virol ; 92(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30185593

RESUMEN

Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in young children and high-risk adults. However, a specific treatment for this viral infection is not currently available. In this study, we discovered that an exchange protein directly activated by cyclic AMP (EPAC) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, treatment with EPAC inhibitor (ESI-09), but not protein kinase A inhibitor (H89), significantly inhibits RSV replication and proinflammatory cytokine/chemokine induction. In addition, RSV-activated transcriptional factors belonging to the NF-κB and IRF families are also suppressed by ESI-09. Through isoform-specific gene knockdown, we found that EPAC2, but not EPAC1, plays a dominant role in controlling RSV replication and virus-induced host responses. Experiments using both EPAC2 knockout and EPAC2-specific inhibitor support such roles of EPAC2. Therefore, EPAC2 is a promising therapeutic target to regulate RSV replication and associated inflammation.IMPORTANCE RSV is a serious public health problem, as it is associated with bronchiolitis, pneumonia, and asthma exacerbations. Currently no effective treatment or vaccine is available, and many molecular mechanisms regarding RSV-induced lung disease are still significantly unknown. This project aims to elucidate an important and novel function of a protein, called EPAC2, in RSV replication and innate inflammatory responses. Our results should provide an important insight into the development of new pharmacologic strategies against RSV infection, thereby reducing RSV-associated morbidity and mortality.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/genética , Virus Sincitial Respiratorio Humano/crecimiento & desarrollo , Virus Sincitial Respiratorio Humano/genética , Replicación Viral/fisiología , Células A549 , Animales , Línea Celular , Quimiocinas/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Humanos , Hidrazonas/farmacología , Isoquinolinas/farmacología , Isoxazoles/farmacología , Ratones , FN-kappa B/antagonistas & inhibidores , Interferencia de ARN , ARN Interferente Pequeño/genética , Infecciones por Virus Sincitial Respiratorio/virología , Sulfonamidas/farmacología
5.
Opt Lett ; 44(23): 5703-5706, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31774758

RESUMEN

In theory, quantum key distribution (QKD) can offer information-theoretic secure communication based on the laws of quantum mechanics. However, the vast majority of practical QKD implementations assume the perfect state preparation to ensure security, which is a demanding requirement with current technology. Here, by incorporating the mismatched-basis data, we report an experimental decoy-state QKD demonstration with uncharacterized encoding sources, which only requires that the encoding states are two-dimensional. Furthermore, the measurement operation of the receiver is loosened to be projective measurements. With a rigorous statistical fluctuation analysis, we can distribute secret keys when the transmission distances of the standard fiber link are 101 and 202 km. Our experimental demonstration represents a significant step toward realizing long-distance quantum communication, even with uncharacterized sources and projective measurements.

6.
Heart Surg Forum ; 22(6): E448-E451, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31895028

RESUMEN

BACKGROUND: To describe staging surgery for the treatment of a patient with aortic arch aneurysm combined with aberrant bilateral subclavian artery, persistent left superior vena cava (PLSVC), and airway compression. CASE REPORT: A 42-year-old female was hospitalized for aortic arch aneurysm involving aberrant bilateral subclavian artery, PLSVC, and airway compression. The patient's aneurysm was successfully treated by stage I surgery, including total aortic arch replacement and stented elephant trunk procedure and stage II surgery, including tracheal stenting and tracheotomy. Aortic CTA examination showed an unobstructed lumen and a good stent position without tracheal stent migration. Regular postoperative follow-up showed no complications, such as dyspnea, cough, and sputum, or other discomfort symptoms. CONCLUSIONS: Total aortic arch replacement, elephant trunk surgery, and second-stage tracheal stent surgery are effective and safe for the treatment of aortic arch aneurysm combined with aberrant bilateral subclavian artery, PLSVC, and airway compression.


Asunto(s)
Obstrucción de las Vías Aéreas/cirugía , Aorta Torácica/cirugía , Aneurisma de la Aorta/cirugía , Anomalías Cardiovasculares/cirugía , Procedimientos Quirúrgicos Cardiovasculares , Arteria Subclavia/anomalías , Vena Cava Superior/anomalías , Vena Cava Superior/cirugía , Adulto , Obstrucción de las Vías Aéreas/etiología , Aneurisma de la Aorta/complicaciones , Femenino , Humanos , Stents , Arteria Subclavia/cirugía , Tráquea/cirugía , Resultado del Tratamiento
7.
PLoS Pathog ; 11(7): e1005067, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26218680

RESUMEN

RNA helicases and chaperones are the two major classes of RNA remodeling proteins, which function to remodel RNA structures and/or RNA-protein interactions, and are required for all aspects of RNA metabolism. Although some virus-encoded RNA helicases/chaperones have been predicted or identified, their RNA remodeling activities in vitro and functions in the viral life cycle remain largely elusive. Enteroviruses are a large group of positive-stranded RNA viruses in the Picornaviridae family, which includes numerous important human pathogens. Herein, we report that the nonstructural protein 2CATPase of enterovirus 71 (EV71), which is the major causative pathogen of hand-foot-and-mouth disease and has been regarded as the most important neurotropic enterovirus after poliovirus eradication, functions not only as an RNA helicase that 3'-to-5' unwinds RNA helices in an adenosine triphosphate (ATP)-dependent manner, but also as an RNA chaperone that destabilizes helices bidirectionally and facilitates strand annealing and complex RNA structure formation independently of ATP. We also determined that the helicase activity is based on the EV71 2CATPase middle domain, whereas the C-terminus is indispensable for its RNA chaperoning activity. By promoting RNA template recycling, 2CATPase facilitated EV71 RNA synthesis in vitro; when 2CATPase helicase activity was impaired, EV71 RNA replication and virion production were mostly abolished in cells, indicating that 2CATPase-mediated RNA remodeling plays a critical role in the enteroviral life cycle. Furthermore, the RNA helicase and chaperoning activities of 2CATPase are also conserved in coxsackie A virus 16 (CAV16), another important enterovirus. Altogether, our findings are the first to demonstrate the RNA helicase and chaperoning activities associated with enterovirus 2CATPase, and our study provides both in vitro and cellular evidence for their potential roles during viral RNA replication. These findings increase our understanding of enteroviruses and the two types of RNA remodeling activities.


Asunto(s)
Infecciones por Enterovirus/metabolismo , Enterovirus/enzimología , Chaperonas Moleculares/metabolismo , ARN Helicasas/metabolismo , ARN Viral/genética , Proteínas no Estructurales Virales/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Replicación Viral/fisiología
8.
Tumour Biol ; 37(7): 9273-83, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26779625

RESUMEN

The aim of this study was to evaluate the association of functional expression of TRPM7 with nasopharyngeal carcinoma (NPC) growth. We examined the correlation of TRPM7 expression with cell growth and proliferation, cell cycle, and apoptosis in vitro in NPC cell lines and NPC tumorigenesis in mice by conducting experiments in mice and by further analyzing the tumor volume and growth. We further explored to see whether there is any positive correlation with the TRPM7 knockdown in NPC cells with their sensitivity to radiation. We found that the functional expression of TRPM7 in nasopharyngeal carcinoma is a critical requirement for physiological processes such as cell cycle, resistance to apoptosis, and cell proliferation. TRPM7 knockdown also enhanced sensitivity to radiotherapy of nasopharyngeal carcinoma. Moreover, we identified TRPM7 as a novel potential regulator of cell proliferation in NPC, through signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway and other anti-apoptotic factors. TRPM7 and STAT3 activation might be critical for the growth of NPC cells and could be an effective target for treatment of nasopharyngeal carcinoma.


Asunto(s)
Carcinogénesis/genética , Neoplasias Nasofaríngeas/genética , Proteínas Serina-Treonina Quinasas/genética , Canales Catiónicos TRPM/genética , Animales , Apoptosis/genética , Carcinogénesis/patología , Carcinoma , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patología , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Carga Tumoral/genética
9.
Pathogens ; 13(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38535583

RESUMEN

Alzheimer's Disease (AD), a progressive and debilitating condition, is reported to be the most common type of dementia, with at least 55 million people believed to be currently affected. Many causation hypotheses of AD exist, yet the intriguing link between viral infection and its possible contribution to the known etiology of AD has become an attractive focal point of research for the field and a challenging study task. In this review, we will explore the historical perspective and milestones that led the field to investigate the viral connection to AD. Specifically, several viruses such as Herpes Simplex Virus 1 (HSV-1), Zika virus (ZIKV), and severe cute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with several others mentioned, include the various viruses presently considered within the field. We delve into the strong evidence implicating these viruses in the development of AD such as the lytic replication and axonal transport of HSV-1, the various mechanisms of ZIKV neurotropism through the human protein Musashi-1 (MSI1), and the spread of SARS-CoV-2 through the transfer of the virus through the BBB endothelial cells to glial cells and then to neurons via transsynaptic transfer. We will also explore beyond these mere associations by carefully analyzing the potential mechanisms by which these viruses may contribute to AD pathology. This includes but is not limited to direct neuronal infections, the dysregulation of immune responses, and the impact on protein processing (Aß42 and hyperphosphorylated tau). Controversies and challenges of the virus-AD relationship emerge as we tease out these potential mechanisms. Looking forward, we emphasize future directions, such as distinct questions and proposed experimentations to explore, that the field should take to tackle the remaining unanswered questions and the glaring research gaps that persist. Overall, this review aims to provide a comprehensive survey of the past, present, and future of the potential link between viral infections and their association with AD development while encouraging further discussion.

10.
J Alzheimers Dis ; 96(3): 1285-1304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37980659

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia, affecting individuals over 65. AD is also a multifactorial disease, with disease mechanisms incompletely characterized, and disease-modifying therapies are marginally effective. Biomarker signatures may shed light on the diagnosis, disease mechanisms, and the development of therapeutic targets. tRNA-derived RNA fragments (tRFs), a family of recently discovered small non-coding RNAs, have been found to be significantly enhanced in human AD hippocampus tissues. However, whether tRFs change in body fluids is unknown. OBJECTIVE: To investigate whether tRFs in body fluids are impacted by AD. METHODS: We first used T4 polynucleotide kinase-RNA-seq, a modified next-generation sequencing technique, to identify detectable tRFs in human cerebrospinal fluid and serum samples. The detectable tRFs were then compared in these fluids from control, AD, and mild cognitive impairment patients using tRF qRT-PCR. The stability of tRFs in serum was also investigated by checking the change in tRFs in response to protein digestion or exosome lysis. RESULTS: Among various tRFs, tRF5-ProAGG seemed to be impacted by AD in both cerebrospinal fluid and serum. AD-impacted serum tRF5-ProAGG showed a correlation with the AD stage. Putative targets of tRF5-ProAGG in the hippocampus were also predicted by a computational algorithm, with some targets being validated experimentally and one of them being in a negative correlation with tRF5-ProAGG even using a small size of samples. CONCLUSIONS: tRF5-ProAGG showed the potential as an AD biomarker and may play a role in disease progression.


Asunto(s)
Enfermedad de Alzheimer , Suero , Humanos , Suero/metabolismo , Enfermedad de Alzheimer/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN , Biomarcadores
11.
Viruses ; 14(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062354

RESUMEN

The susceptibility to respiratory syncytial virus (RSV) infection in early life has been associated with a deficient T-helper cell type 1 (Th1) response. Conversely, healthy adults generally do not exhibit severe illness from RSV infection. In the current study, we investigated whether Th1 cytokine IFN-γ is essential for protection against RSV and RSV-associated comorbidities in adult mice. We found that, distinct from influenza virus, prior RSV infection does not induce significant IFN-γ production and susceptibility to secondary Streptococcus pneumoniae infection in adult wild-type (WT) mice. In ovalbumin (OVA)-induced asthmatic mice, RSV super-infection increases airway neutrophil recruitment and inflammatory lung damage but has no significant effect on OVA-induced eosinophilia. Compared with WT controls, RSV infection of asthmatic Ifng-/- mice results in increased airway eosinophil accumulation. However, a comparable increase in eosinophilia was detected in house dust mite (HDM)-induced asthmatic Ifng-/- mice in the absence of RSV infection. Furthermore, neither WT nor Ifng-/- mice exhibit apparent eosinophil infiltration during RSV infection alone. Together, these findings indicate that, despite its critical role in limiting eosinophilic inflammation during asthma, IFN-γ is not essential for protection against RSV-induced exacerbation of asthmatic inflammation in adult mice.


Asunto(s)
Asma/patología , Inflamación/inmunología , Interferón gamma/inmunología , Pulmón/inmunología , Pulmón/patología , Infecciones por Virus Sincitial Respiratorio/inmunología , Animales , Asma/inducido químicamente , Asma/inmunología , Líquido del Lavado Bronquioalveolar , Coinfección/inmunología , Coinfección/microbiología , Coinfección/prevención & control , Comorbilidad , Femenino , Inflamación/prevención & control , Interferón gamma/genética , Pulmón/microbiología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Ovalbúmina/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Células TH1 , Células Th2
12.
Exp Ther Med ; 24(6): 748, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36561967

RESUMEN

Since ferroptosis is considered to be a notable cause of cardiomyocyte death, inhibiting ferroptosis has become a novel strategy in reducing cardiac cell death and improving cardiopathic conditions. Therefore, the aim of the present study was to search for ferroptosis-related hub genes and determine their diagnostic value in myocardial infarction (MI) to aid in the diagnosis and treatment of the disease. A total of 10,286 DEGs were identified, including 6,822 upregulated and 3.464 downregulated genes in patients with MI compared with healthy controls. After overlapping with ferroptosis-related genes, 128 ferroptosis-related DEGs were obtained. WGCNA successfully identified a further eight functional modules, from which the blue module had the strongest correlation with MI. Blue module genes and ferroptosis-related differentially expressed genes were overlapped to obtain 20 ferroptosis-related genes associated with MI. Go and KEGG analysis showed that these genes were mainly enriched in cellular response to chemical stress, trans complex, transferring, phosphorus-containing groups, protein serine/threonine kinase activity, FoxO signaling pathway. Hub genes were obtained from 20 ferroptosis-related genes through the PPI network. The expression of hub genes was found to be down-regulated in the MI group. Finally, the miRNAs-hub genes and TFs-hub genes networks were constructed. The GSE141512 dataset and the use of RT-qPCR assays on patient blood samples were used to confirm these results. The results showed that ATM, PIK3CA, MAPK8, KRAS and SIRT1 may play key roles in the development of MI, and could therefore be novel markers or targets for the diagnosis or treatment of MI.

13.
Transl Res ; 249: 13-27, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35688318

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM) adjuvant to SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable systemic humoral and type 1 helper T (Th) cell- mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant challenge. Notably, mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited stronger lung resident T and B cells and IgA responses compared to parenteral vaccination alone, which led to markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant challenge. Overall, our results suggest that mPSM is effective adjuvant for SARS-CoV-2 subunit vaccine in both systemic and mucosal vaccinations.


Asunto(s)
COVID-19 , Vacunas Virales , Adyuvantes Inmunológicos/farmacología , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad Mucosa , Inmunoglobulina A , Ratones , Porosidad , SARS-CoV-2 , Silicio/farmacología , Vacunas de Subunidad
14.
Front Mol Biosci ; 9: 821137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281271

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. In the context of viral infections, small non-coding RNAs (sncRNAs) are known to play important roles in regulating the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we found that sncRNA profiles in human nasopharyngeal swabs (NPS) samples are significantly impacted by SARS-CoV-2. Among impacted sncRNAs, tRFs are the most significantly affected and most of them are derived from the 5'-end of tRNAs (tRF5). Such a change was also observed in SARS-CoV-2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several small virus-derived ncRNAs (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.

15.
Viruses ; 15(1)2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36680097

RESUMEN

tRNA-derived RNA fragments (tRFs) are a recently discovered family of small noncoding RNAs (sncRNAs). We previously reported that respiratory syncytial virus (RSV) infection induces functional tRFs, which are derived from a limited subset of parent tRNAs, in airway epithelial cells. Such induction is also observed in nasopharyngeal wash samples from RSV patients and correlates to RSV genome copies, suggesting a clinical significance of tRFs in RSV infection. This work also investigates whether the modification of parent tRNAs is changed by RSV to induce tRFs, using one of the most inducible tRFs as a model. We discovered that RSV infection changed the methylation modification of adenine at position 57 in tRNA glutamic acid, with a codon of CTC (tRNA-GluCTC), and the change is essential for its cleavage. AlkB homolog 1, a previously reported tRNA demethylase, appears to remove methyladenine from tRNA-GluCTC, prompting the subsequent production of tRFs from the 5'-end of tRNA-GluCTC, a regulator of RSV replication. This study demonstrates for the first time the importance of post-transcriptional modification of tRNAs in tRF biogenesis following RSV infection, providing critical insights for antiviral strategy development.


Asunto(s)
ARN Pequeño no Traducido , Infecciones por Virus Sincitial Respiratorio , Humanos , Infecciones por Virus Sincitial Respiratorio/genética , ARN de Transferencia/genética , ARN Pequeño no Traducido/genética , Células Epiteliales
16.
J Alzheimers Dis ; 79(2): 793-806, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33337366

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common type of dementia caused by irreversible neurodegeneration, with the onset mechanisms elusive. tRNA-derived RNA fragments (tRFs), a recently discovered family of small non-coding RNAs (sncRNAs), have been found to associate with many human diseases, including infectious, metabolic, and neurological diseases. However, whether tRFs play a role in human AD development is not known. OBJECTIVE: This study aimed to explore whether tRFs are involved in human AD. METHODS: Thirty-four postmortem human hippocampus samples were used. The expression of Drosha, Dicer, and angiogenin (ANG), three ribonucleases responsible for the biogenesis of sncRNAs, was determined by qRT-PCR and western blot. The tRFs in the hippocampus was detected by qRT-PCR or northern blot. We also used qRT-PCR to quantify NOP2/Sun RNA methyltransferase 2 (NSun2) and polyadenylation factor I subunit 1 (CLP1), two tRNA modification enzymes. RESULTS: tRFs derived from a subset of tRNAs are significantly altered in the hippocampus of AD patients. The expression change of some tRFs showed age- and disease stage-dependent. ANG is significantly enhanced in AD, suggesting its role in inducing tRFs in AD. The expression of NSun2 in AD patients younger than 65 was significantly decreased. According to a previous report supporting NSun2-mediated tRNA methylation modification making tRNA less susceptible to ANG-mediated cleavage, our results suggested that the decrease in NSun2 may make tRNAs less methylated and subsequently enhanced tRF production from ANG-mediated tRNA cleavage. CONCLUSION: Our studies demonstrated for the first time the involvement of tRFs in human AD.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Hipocampo/metabolismo , ARN de Transferencia/metabolismo , Anciano , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Biomarcadores , Northern Blotting , Estudios de Casos y Controles , Humanos , Reacción en Cadena de la Polimerasa , ARN Pequeño no Traducido
17.
Front Immunol ; 12: 757758, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34733289

RESUMEN

Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract infection in young children. It is also a significant contributor to upper respiratory tract infections, therefore, a major cause for visits to the pediatrician. High morbidity and mortality are associated with high-risk populations including premature infants, the elderly, and the immunocompromised. However, no effective and specific treatment is available. Recently, we discovered that an exchange protein directly activated by cyclic AMP 2 (EPAC2) can serve as a potential therapeutic target for RSV. In both lower and upper epithelial cells, EPAC2 promotes RSV replication and pro-inflammatory cytokine/chemokine induction. However, the overall role of EPAC2 in the pulmonary responses to RSV has not been investigated. Herein, we found that EPAC2-deficient mice (KO) or mice treated with an EPAC2-specific inhibitor showed a significant decrease in body weight loss, airway hyperresponsiveness, and pulmonary inflammation, compared with wild-type (WT) or vehicle-treated mice. Overall, this study demonstrates the critical contribution of the EPAC2-mediated pathway to airway diseases in experimental RSV infection, suggesting the possibility to target EPAC2 as a promising treatment modality for RSV.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/fisiología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Obstrucción de las Vías Aéreas/etiología , Animales , AMP Cíclico/fisiología , Citocinas/biosíntesis , Citocinas/genética , Factor Estimulante de Colonias de Granulocitos/biosíntesis , Factor Estimulante de Colonias de Granulocitos/genética , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Factores de Intercambio de Guanina Nucleótido/deficiencia , Inflamación , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Hipersensibilidad Respiratoria/etiología , Infecciones por Virus Sincitial Respiratorio/complicaciones , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Virus Sincitiales Respiratorios/fisiología , Organismos Libres de Patógenos Específicos , Replicación Viral , Pérdida de Peso
18.
bioRxiv ; 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34845456

RESUMEN

Development of optimal SARS-CoV-2 vaccines to induce potent, long-lasting immunity and provide cross-reactive protection against emerging variants remains a high priority. Here, we report that a modified porous silicon microparticle (mPSM)-adjuvanted SARS-CoV-2 receptor-binding domain (RBD) vaccine activated dendritic cells and generated more potent and durable SARS-CoV-2-specific systemic humoral and type 1 helper T (Th) cell-mediated immune responses than alum-formulated RBD following parenteral vaccination, and protected mice from SARS-CoV-2 and Beta variant infection. mPSM facilitated the uptake of SARS-CoV-2 RBD antigens by nasal and airway epithelial cells. Parenteral and intranasal prime and boost vaccinations with mPSM-RBD elicited potent systemic and lung resident memory T and B cells and SARS-CoV-2 specific IgA responses, and markedly diminished viral loads and inflammation in the lung following SARS-CoV-2 Delta variant infection. Our results suggest that mPSM can serve as potent adjuvant for SARS-CoV-2 subunit vaccine which is effective for systemic and mucosal vaccination.

19.
bioRxiv ; 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34981063

RESUMEN

The ongoing pandemic of coronavirus disease 2019 (COVID-19), which results from the rapid spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a significant global public health threat, with molecular mechanisms underlying its pathogenesis largely unknown. Small non-coding RNAs (sncRNAs) are known to play important roles in almost all biological processes. In the context of viral infections, sncRNAs have been shown to regulate the host responses, viral replication, and host-virus interaction. Compared with other subfamilies of sncRNAs, including microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs), tRNA-derived RNA fragments (tRFs) are relatively new and emerge as a significant regulator of host-virus interactions. Using T4 PNK-RNA-seq, a modified next-generation sequencing (NGS), we recently found that nasopharyngeal swabs (NPS) samples from SARS-CoV-2 positive and negative subjects show a significant difference in sncRNA profiles. There are about 166 SARS-CoV-2-impacted sncRNAs. Among them, tRFs are the most significantly affected and almost all impacted tRFs are derived from the 5'-end of tRNAs (tRF5). Using a modified qRT-PCR, which was recently developed to specifically quantify tRF5s by isolating the tRF signals from its corresponding parent tRNA signals, we validated that tRF5s derived from tRNA GluCTC (tRF5-GluCTC), LysCTT (tRF5-LysCTT), ValCAC (tRF5-ValCAC), CysGCA (tRF5-CysGCA) and GlnCTG (tRF5-GlnCTG) are enhanced in NPS samples of SARS-CoV2 patients and SARS-CoV2-infected airway epithelial cells. In addition to host-derived ncRNAs, we also identified several sncRNAs derived from the virus (svRNAs), among which a svRNA derived from CoV2 genomic site 346 to 382 (sv-CoV2-346) has the highest expression. The induction of both tRFs and sv-CoV2-346 has not been reported previously, as the lack of the 3'-OH ends of these sncRNAs prevents them to be detected by routine NGS. In summary, our studies demonstrated the involvement of tRFs in COVID-19 and revealed new CoV2 svRNAs.

20.
Viruses ; 13(6)2021 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-34205489

RESUMEN

The recently discovered exchange protein directly activated by cAMP (EPAC), compared with protein kinase A (PKA), is a fairly new family of cAMP effectors. Soon after the discovery, EPAC has shown its significance in many diseases including its emerging role in infectious diseases. In a recent study, we demonstrated that EPAC, but not PKA, is a promising therapeutic target to regulate respiratory syncytial virus (RSV) replication and its associated inflammation. In mammals, there are two isoforms of EPAC-EPAC1 and EPAC2. Unlike other viruses, including Middle East respiratory syndrome coronavirus (MERS-CoV) and Ebola virus, which use EPAC1 to regulate viral replication, RSV uses EPAC2 to control its replication and associated cytokine/chemokine responses. To determine whether EPAC2 protein has a broad impact on other respiratory viral infections, we used an EPAC2-specific inhibitor, MAY0132, to examine the functions of EPAC2 in human metapneumovirus (HMPV) and adenovirus (AdV) infections. HMPV is a negative-sense single-stranded RNA virus belonging to the family Pneumoviridae, which also includes RSV, while AdV is a double-stranded DNA virus. Treatment with an EPAC1-specific inhibitor was also included to investigate the impact of EPAC1 on these two viruses. We found that the replication of HMPV, AdV, and RSV and the viral-induced immune mediators are significantly impaired by MAY0132, while an EPAC1-specific inhibitor, CE3F4, does not impact or slightly impacts, demonstrating that EPAC2 could serve as a novel common therapeutic target to control these viruses, all of which do not have effective treatment and prevention strategies.


Asunto(s)
Adenoviridae/fisiología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Metapneumovirus/fisiología , Virus Sincitial Respiratorio Humano/fisiología , Replicación Viral , Células A549 , Línea Celular , Quimiocinas/inmunología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/virología , Factores de Intercambio de Guanina Nucleótido/antagonistas & inhibidores , Células HEK293 , Humanos , Quinolinas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA