Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 13(26): 31226-31235, 2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34176260

RESUMEN

Micro/nano-motors (MNMs) that combine attributes of miniaturization and self-propelled swimming mobility have been explored for efficient environmental remediation in the past decades. However, their progresses in practical applications are now subject to several critical issues including a complicated fabrication process, low production yield, and high material cost. Herein, we propose a biotemplated catalytic tubular micromotor consisting of a kapok fiber (KF, abundant in nature) matrix and manganese dioxide nanoparticles (MnO2 NPs) deposited on the outer and inner walls of the KF and demonstrate its applications for rapid removal of methylene blue (MB) in real-world wastewater. The fabrication is straightforward via dipping the KF into a potassium permanganate (KMnO4) solution, featured with high yield and low cost. The distribution and amount of MnO2 can be easily controlled by varying the dipping time. The obtained motors are actuated and propelled by oxygen (O2) bubbles generated from MnO2-triggered catalytic decomposition of hydrogen peroxide (H2O2), with the highest speed at 615 µm/s (i.e., 6 body length per second). To enhance decontamination efficacy and also enable magnetic navigation/recycling, magnetite nanoparticles (Fe3O4 NPs) are adsorbed onto such motors via an electrostatic effect. Both the Fe3O4-induced Fenton reaction and hydroxyl radicals from MnO2-catalyzed H2O2 decomposition can account for the MB removal (or degradation). Results of this study, taken together, provide a cost-effective approach to achieve high-yield production of the MNMs, suggesting an automatous microcleaner able to perform practical wastewater treatment.

2.
RSC Adv ; 10(25): 14846-14855, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497119

RESUMEN

Water pollution is currently an urgent public health and environmental issue. Bubble-propelled micromotors might offer an effective approach for dealing with environmental contamination. Herein, we present the synthesis of multi-walled carbon nanotube (MWCNT)/manganese dioxide (MnO2) micromotors based on MWCNT aggregates as microscale templates by a simple one-step hydrothermal procedure. The morphology, composition, and structure of the obtained MWCNT/MnO2 micromotors were characterized in detail. The MnO2 nanoflakes formed a catalytic layer on the MWCNT backbone, which promoted effective bubble evolution and propulsion at remarkable speeds of 359.31 µm s-1. The bubble velocity could be modulated based on the loading of MnO2 nanoflakes. The rapid movement of these MWCNT/MnO2 catalytic micromotors resulted in a highly efficient moving adsorption platform, which considerably enhanced the effectiveness of water purification. Dynamic adsorption of organic dyes by the micromotors increased the degradation rate to approximately 4.8 times as high as that of their corresponding static counterparts. The adsorption isotherms and adsorption kinetics were also explored. The adsorption mechanism was well fitted by the Langmuir model, following pseudo-second-order kinetics. Thus, chemisorption of Congo red at the heterogeneous MnO2 wrapped microimotor surface was the rate determining step. The high propulsion speed and remarkable decontamination efficiency of the MWCNT/MnO2 micromotors indicate potential for environmental contamination applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA