Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.194
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 583(7815): 286-289, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380510

RESUMEN

The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Euterios/virología , Evolución Molecular , Genoma Viral/genética , Homología de Secuencia de Ácido Nucleico , Animales , Betacoronavirus/clasificación , COVID-19 , China , Quirópteros/virología , Chlorocebus aethiops , Proteínas de la Envoltura de Coronavirus , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Proteínas M de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Reservorios de Enfermedades/virología , Genómica , Especificidad del Huésped , Humanos , Pulmón/patología , Pulmón/virología , Malasia , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Filogenia , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa , Recombinación Genética , SARS-CoV-2 , Alineación de Secuencia , Análisis de Secuencia de ARN , Glicoproteína de la Espiga del Coronavirus/genética , Células Vero , Proteínas del Envoltorio Viral/genética , Proteínas de la Matriz Viral/genética , Zoonosis/transmisión , Zoonosis/virología
2.
PLoS Pathog ; 19(5): e1011384, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37196026

RESUMEN

Malayan pangolin SARS-CoV-2-related coronavirus (SARSr-CoV-2) is closely related to SARS-CoV-2. However, little is known about its pathogenicity in pangolins. Using CT scans we show that SARSr-CoV-2 positive Malayan pangolins are characterized by bilateral ground-glass opacities in lungs in a similar manner to COVID-19 patients. Histological examination and blood gas tests are indicative of dyspnea. SARSr-CoV-2 infected multiple organs in pangolins, with the lungs the major target, and histological expression data revealed that ACE2 and TMPRSS2 were co-expressed with viral RNA. Transcriptome analysis indicated that virus-positive pangolins were likely to have inadequate interferon responses, with relative greater cytokine and chemokine activity in the lung and spleen. Notably, both viral RNA and viral proteins were detected in three pangolin fetuses, providing initial evidence for vertical virus transmission. In sum, our study outlines the biological framework of SARSr-CoV-2 in pangolins, revealing striking similarities to COVID-19 in humans.


Asunto(s)
COVID-19 , Quirópteros , Animales , Humanos , Pangolines/genética , SARS-CoV-2/genética , Virulencia , Filogenia , ARN Viral , Tropismo
3.
Am J Pathol ; 194(6): 1078-1089, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38417697

RESUMEN

Ferroptosis is a new form of cell death characterized by iron-dependent lipid peroxidation. Whether ferroptosis is involved in retinal microvascular dysfunction under diabetic condition is not known. Herein, the expression of ferroptosis-related genes in patients with proliferative diabetic retinopathy and in diabetic mice was determined with quantitative RT-PCR. Reactive oxygen species, iron content, lipid peroxidation products, and ferroptosis-associated proteins in the cultured human retinal microvascular endothelial cells (HRMECs) and in the retina of diabetic mice were examined. The association of ferroptosis with the functions of endothelial cells in vitro was evaluated. After administration of ferroptosis-specific inhibitor, Fer-1, the retinal microvasculature in diabetic mice was assessed. Characteristic changes of ferroptosis-associated markers, including glutathione peroxidase 4, ferritin heavy chain 1, long-chain acyl-CoA synthetase 4, transferrin receptor protein 1, and cyclooxygenase-2, were detected in the retinal fibrovascular membrane of patients with proliferative diabetic retinopathy, cultured HRMECs, and the retina of diabetic mice. Elevated levels of reactive oxygen species, lipid peroxidation, and iron content were found in the retina of diabetic mice and in cultured HRMECs. Ferroptosis was found to be associated with HRMEC dysfunction under high-glucose condition. Inhibition of ferroptosis with specific inhibitor Fer-1 in diabetic mice significantly reduced the severity of retinal microvasculopathy. Ferroptosis contributes to microvascular dysfunction in diabetic retinopathy, and inhibition of ferroptosis might be a promising strategy for the therapy of early-stage diabetic retinopathy.


Asunto(s)
Retinopatía Diabética , Ferroptosis , Especies Reactivas de Oxígeno , Retinopatía Diabética/patología , Retinopatía Diabética/metabolismo , Animales , Humanos , Ratones , Masculino , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Microvasos/patología , Microvasos/metabolismo , Hierro/metabolismo , Vasos Retinianos/metabolismo , Vasos Retinianos/patología
4.
FASEB J ; 38(4): e23491, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38363556

RESUMEN

According to recent research, metabolic-associated fatty liver disease (MAFLD) has emerged as an important underlying etiology of hepatocellular carcinoma (HCC). However, the molecular mechanism of MAFLD-HCC is still unclear. Tumor necrosis factor receptor-associated factor 2 (TRAF2) is the key molecule to mediate the signal of inflammatory NF-κB pathway. This study aims to investigate the potential dysregulation of TRAF2 and its biological function in MAFLD-HCC. Huh7 TRAF2-/- demonstrated increased tumor formation ability compared to huh7 TRAF2+/+ when stimulated with transforming growth factor-ß (TGF-ß). The decisive role of TGF-ß in the development of MAFLD-HCC was confirmed through the specific depletion of TGF-ß receptor II gene in the hepatocytes (Tgfbr2ΔHep) of mice. In TRAF2-/- cells treated with TGF-ß, both the glycolysis rate and lipid synthesis were enhanced. We proved the signal of the mechanistic target of rapamycin complex 1 (mTORC1) could be activated in the presence of TGF-ß, and was enhanced in TRAF2-/- cells. The coimmunoprecipitation (co-IP) experiments revealed that TRAF2 fortified the Smurf2-mediated ubiquitination degradation of AXIN1. Hence, TRAF2 depletion resulted in increased Smad7 degradation induced by AXIN1, thus promoting the TGF-ß signal. We also discovered that PLX-4720 could bind with AXIN1 and restrained the tumor proliferation of TRAF2-/- in mice fed with high-fat diet (HFD). Our findings indicate that TRAF2 plays a significant role in the pathogenesis of MAFLD-HCC. The reduction of TRAF2 expression leads to the enhancement of the TGF-ß-mTORC1 pathway by facilitating AXIN1-mediated Smad7 degradation.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatocitos/metabolismo , Proteína smad7/genética , Proteína smad7/metabolismo
5.
Exp Cell Res ; 436(1): 113956, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38341081

RESUMEN

Patients with hepatocellular carcinoma (HCC) are vulnerable to drug resistance. Although drug resistance has been taken much attention to HCC therapy, little is known of regorafenib and regorafenib resistance (RR). This study aimed to determine the drug resistance pattern and the role of RhoA in RR. Two regorafenib-resistant cell lines were constructed based on Huh7 and Hep3B cell lines. In vitro and in vivo assays were conducted to study RhoA expression, the activity of Hippo signaling pathway and cancer stem cell (CSC) traits. The data showed that RhoA was highly expressed, Hippo signaling was hypoactivated and CSC traits were more prominent in RR cells. Inhibiting RhoA could reverse RR, and the alliance of RhoA inhibition and regorafenib synergistically attenuated CSC phenotype. Furthermore, inhibiting LARG/RhoA increased Kibra/NF2 complex formation, prevented YAP from shuttling into the nucleus and repressed CD44 mRNA expression. Clinically, the high expression of RhoA correlated with poor prognosis. LARG, RhoA, YAP1 and CD44 show positive correlation with each other. Thus, inhibition of RhoGEF/RhoA has the potential to reverse RR and repress CSC phenotype in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piridinas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Vía de Señalización Hippo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Compuestos de Fenilurea/farmacología
6.
Proc Natl Acad Sci U S A ; 119(19): e2116380119, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500124

RESUMEN

SignificanceThere is a common consensus that lode gold deposits mostly precipitated from metamorphic fluids via fluid boiling and/or fluid-rock interaction, but whether magmatic hydrothermal fluids and the mixing of such fluids with an external component have played a vital role in the formation of lode gold deposits remains elusive. We use garnet secondary ion mass spectrometry oxygen isotope analysis to demonstrate that the world-class Dongping lode gold deposit has been formed by multiple pulses of magmatic hydrothermal fluids and their mixing with large volumes of meteoric water. This study opens an opportunity to tightly constrain the origin of lode gold deposits worldwide and other hydrothermal systems that may have generated giant ore deposits in the Earth's crust.

7.
Plant J ; 116(1): 161-172, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381795

RESUMEN

Ovules are female reproductive organs of angiosperms, consisting of sporophytic integuments surrounding female gametophytes, that is, embryo sacs. Synchronization between integument growth and embryo sac development requires intracellular communication. However, signaling routes through which cells of the two generations communicate are unclear. We report that symplastic signals through plasmodesmata (PDs) of integuments are critical for the development of female gametophytes. Genetic interferences of PD biogenesis either by functional loss of CHOLINE TRANSPORTER-LIKE1 (CTL1) or by integument-specific expression of a mutated CALLOSE SYNTHASE 3 (cals3m) compromised PD formation in integuments and reduced fertility. Close examination of pINO:cals3m or ctl1 ovules indicated that female gametophytic development was either arrested at various stages after the formation of functional megaspores. In both cases, defective ovules could not attract pollen tubes, leading to the failure of fertilization. Results presented here demonstrate a key role of the symplastic route in sporophytic control of female gametophytic development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad , Tubo Polínico/metabolismo
8.
Eur J Neurosci ; 59(10): 2577-2595, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38419188

RESUMEN

Globally, the incidence of diabetes mellitus (DM) and Alzheimer's disease (AD) is increasing year by year, causing a huge economic and social burden, and their pathogenesis and aetiology have been proven to have a certain correlation. In recent years, more and more studies have shown that vacuolar adenosine triphosphatases (v-ATPases) in eukaryotes, which are biomolecules regulating lysosomal acidification and glycolipid metabolism, play a key role in DM and AD. This article describes the role of v-ATPase in DM and AD, including its role in glycolysis, insulin secretion and insulin resistance (IR), as well as its relationship with lysosomal acidification, autophagy and ß-amyloid (Aß). In DM, v-ATPase is involved in the regulation of glucose metabolism and IR. v-ATPase is closely related to glycolysis. On the one hand, v-ATPase affects the rate of glycolysis by affecting the secretion of insulin and changing the activities of key glycolytic enzymes hexokinase (HK) and phosphofructokinase 1 (PFK-1). On the other hand, glucose is the main regulator of this enzyme, and the assembly and activity of v-ATPase depend on glucose, and glucose depletion will lead to its decomposition and inactivation. In addition, v-ATPase can also regulate free fatty acids, thereby improving IR. In AD, v-ATPase can not only improve the abnormal brain energy metabolism by affecting lysosomal acidification and autophagy but also change the deposition of Aß by affecting the production and degradation of Aß. Therefore, v-ATPase may be the bridge between DM and AD.


Asunto(s)
Enfermedad de Alzheimer , Diabetes Mellitus , Glucólisis , ATPasas de Translocación de Protón Vacuolares , Enfermedad de Alzheimer/metabolismo , Humanos , ATPasas de Translocación de Protón Vacuolares/metabolismo , Animales , Diabetes Mellitus/metabolismo , Glucólisis/fisiología , Resistencia a la Insulina , Lisosomas/metabolismo , Autofagia/fisiología
9.
Immunogenetics ; 76(2): 123-135, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38427105

RESUMEN

To examine whether circulating interleukin-6 (IL-6) levels (CirIL6) have a causal effect on blood pressure using Mendelian randomization (MR) methods. We used data from genome-wide association studies (GWAS) of European ancestry to obtain genetic instruments for circulating IL-6 levels and blood pressure measurements. We applied several robust MR methods to estimate the causal effects and to test for heterogeneity and pleiotropy. We found that circulating IL-6 had a significant positive causal effect on systolic blood pressure (SBP) and pulmonary arterial hypertension (PAH), but not on diastolic blood pressure (DBP) or hypertension. We found that as CirIL6 genetically increased, SBP increased using Inverse Variance Weighted (IVW) method (for ukb-b-20175, ß = 0.082 with SE = 0.032, P = 0.011; for ukb-a-360, ß = 0.075 with SE = 0.031, P = 0.014) and weighted median (WM) method (for ukb-b-20175, ß = 0.061 with SE = 0.022, P = 0.006; for ukb-a-360, ß = 0.065 with SE = 0.027, P = 0.014). Moreover, CirIL6 may be associated with an increased risk of PAH using WM method (odds ratio (OR) = 15.503, 95% CI, 1.025-234.525, P = 0.048), but not with IVW method. Our study provides novel evidence that circulating IL-6 has a causal role in the development of SBP and PAH, but not DBP or hypertension. These findings suggest that IL-6 may be a potential therapeutic target for preventing or treating cardiovascular diseases and metabolic disorders. However, more studies are needed to confirm the causal effects of IL-6 on blood pressure and to elucidate the underlying mechanisms and pathways.


Asunto(s)
Hipertensión , Interleucina-6 , Humanos , Presión Sanguínea/genética , Interleucina-6/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Hipertensión/genética
10.
Cancer Immunol Immunother ; 73(1): 14, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236288

RESUMEN

Blood-based biomarkers of immune checkpoint inhibitors (ICIs) response in patients with nasopharyngeal carcinoma (NPC) are lacking, so it is necessary to identify biomarkers to select NPC patients who will benefit most or least from ICIs. The absolute values of lymphocyte subpopulations, biochemical indexes, and blood routine tests were determined before ICIs-based treatments in the training cohort (n = 130). Then, the least absolute shrinkage and selection operator (Lasso) Cox regression analysis was developed to construct a prediction model. The performances of the prediction model were compared to TNM stage, treatment, and Epstein-Barr virus (EBV) DNA using the concordance index (C-index). Progression-free survival (PFS) was estimated by Kaplan-Meier (K-M) survival curve. Other 63 patients were used for validation cohort. The novel model composed of histologic subtypes, CD19+ B cells, natural killer (NK) cells, regulatory T cells, red blood cells (RBC), AST/ALT ratio (SLR), apolipoprotein B (Apo B), and lactic dehydrogenase (LDH). The C-index of this model was 0.784 in the training cohort and 0.735 in the validation cohort. K-M survival curve showed patients with high-risk scores had shorter PFS compared to the low-risk groups. For predicting immune therapy responses, the receiver operating characteristic (ROC), decision curve analysis (DCA), net reclassifcation improvement index (NRI) and integrated discrimination improvement index (IDI) of this model showed better predictive ability compared to EBV DNA. In this study, we constructed a novel model for prognostic prediction and immunotherapeutic response prediction in NPC patients, which may provide clinical assistance in selecting those patients who are likely to gain long-lasting clinical benefits to anti-PD-1 therapy.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Infecciones por Virus de Epstein-Barr/complicaciones , Carcinoma Nasofaríngeo/terapia , Herpesvirus Humano 4 , Inmunoterapia , Pronóstico , Antígenos CD19 , Neoplasias Nasofaríngeas/terapia , ADN
11.
Brief Bioinform ; 23(3)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35233612

RESUMEN

Explosively emerging SARS-CoV-2 variants challenge current nomenclature schemes based on genetic diversity and biological significance. Genomic composition-based machine learning methods have recently performed well in identifying phenotype-genotype relationships. We introduced a framework involving dinucleotide (DNT) composition representation (DCR) to parse the general human adaptation of RNA viruses and applied a three-dimensional convolutional neural network (3D CNN) analysis to learn the human adaptation of other existing coronaviruses (CoVs) and predict the adaptation of SARS-CoV-2 variants of concern (VOCs). A markedly separable, linear DCR distribution was observed in two major genes-receptor-binding glycoprotein and RNA-dependent RNA polymerase (RdRp)-of six families of single-stranded (ssRNA) viruses. Additionally, there was a general host-specific distribution of both the spike proteins and RdRps of CoVs. The 3D CNN based on spike DCR predicted a dominant type II adaptation of most Beta, Delta and Omicron VOCs, with high transmissibility and low pathogenicity. Type I adaptation with opposite transmissibility and pathogenicity was predicted for SARS-CoV-2 Alpha VOCs (77%) and Kappa variants of interest (58%). The identified adaptive determinants included D1118H and A570D mutations and local DNTs. Thus, the 3D CNN model based on DCR features predicts SARS-CoV-2, a major type II human adaptation and is qualified to predict variant adaptation in real time, facilitating the risk-assessment of emerging SARS-CoV-2 variants and COVID-19 control.


Asunto(s)
COVID-19 , Aprendizaje Profundo , COVID-19/genética , Niño , Humanos , Mutación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética
12.
Cell Tissue Res ; 395(2): 189-197, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38180567

RESUMEN

Spinal cord injury (SCI) is a significant contributor to disability in contemporary society, resulting in substantial psychological and economic burdens for patients and their family. Microglia-mediated inflammation is an important factor affecting the nerve repair of SCI patients. N6-methyladenosine (m6A) is a prevalent epigenetic modification in mammals, which shows a strong association with inflammation. However, the mechanism of m6A modification regulating microglia-mediated inflammation is still unclear. Here, we observed that METTL3, a m6A methylase, was increased in SCI mice and lipopolysaccharide (LPS)-exposed BV2 cells. Knockdown of METTL3 inhibited the increased expression of iNOS and IL-1ß induced by LPS in vitro. Subsequently, MEF2C, myocyte-specific enhancer factor 2C, was decreased in SCI mice and LPS-exposed BV2 cells. Knockdown of MEF2C promoted the expression of iNOS and IL-1ß. Sequence analysis showed that there were multiple highly confident m6A modification sites on the MEF2C mRNA. METTL3 antibody could pull down a higher level of MEF2C mRNA than the IgG in RNA binding protein immunoprecipitation assay. Knockdown of METTL3 promoted MEF2C protein expression and MEF2C mRNA expression, accompanied by a reduced m6A modification level on the MEF2C mRNA. Knockdown of MEF2C inhibited the anti-inflammatory effect of METTL3 siRNA. Our results suggest that METTL3 promotes microglia inflammation via regulating MEF2C mRNA m6A modification induced by SCI and LPS treatment.


Asunto(s)
Microglía , Traumatismos de la Médula Espinal , Animales , Humanos , Ratones , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Mamíferos/metabolismo , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Microglía/metabolismo , ARN Mensajero/metabolismo , Médula Espinal
13.
Ann Surg Oncol ; 31(8): 5047-5054, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38172446

RESUMEN

BACKGROUND: The higher pathologic complete response (pCR) after neoadjuvant chemoradiotherapy compared with neoadjuvant chemotherapy for locally advanced esophageal squamous cell carcinoma (ESCC) has not translated into significant gains in overall survival. Data on the long-term survival of patients who obtained a pCR after neoadjuvant chemotherapy are scarce. Therefore, this study aimed to evaluate the long-term prognosis and recurrence patterns in these patients. METHODS: The study enrolled patients with locally advanced ESCC after neoadjuvant chemotherapy followed by surgery in the authors' hospital between January 2007 and December 2020. The factors predictive of pCR were analyzed. Furthermore, propensity score-matching was performed for those who did and those who did not have a pCR using 1:5 ratio for a long-term survival analysis. Finally, the survival and recurrence patterns of patients obtaining pCR after neoadjuvant chemotherapy were analyzed. RESULTS: A pCR was achieved for 61 (8.70%) of the 701 patients in the study. Univariate analysis showed that the patients without alcohol drinking had a higher possibility of obtaining a pCR, although multivariate analysis failed to confirm the difference as significant. After propensity score-matching, the 5-year overall survival was 84.50% for the patients who had a pCR and 52.90% for those who did not (p < 0.001). Among the 61 patients with a pCR, 9 patients (14.80%) experienced recurrence, including 6 patients with locoregional recurrence and 3 patients with distant metastasis. CONCLUSION: Advanced ESCC patients with pCR after neoadjuvant chemotherapy had a favorable prognosis, yet some still experienced recurrence, particularly locoregional recurrence. Therefore, for this group of patients, regular follow-up evaluation also is needed.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Esofagectomía , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Humanos , Masculino , Femenino , Terapia Neoadyuvante/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/tratamiento farmacológico , Persona de Mediana Edad , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/mortalidad , Recurrencia Local de Neoplasia/terapia , Tasa de Supervivencia , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Esofagectomía/mortalidad , Pronóstico , Estudios de Seguimiento , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Estudios Retrospectivos , Respuesta Patológica Completa
14.
Ann Surg Oncol ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060694

RESUMEN

BACKGROUND: Definitive chemoradiotherapy is recommended as the primary treatment for cervical esophageal carcinoma (CEC). However, local control rates remain unsatisfactory for some patients. Therefore, in this study, we introduced a new treatment paradigm for individuals with CEC, customizing the choice between subsequent local treatments based on their response to induction chemotherapy and immunotherapy. PATIENTS AND METHODS: Induction treatment comprised two to four cycles of chemotherapy combined with programmed cell death protein 1 (PD-1) inhibitors. Patients achieving complete response (CR) or near CR after induction treatment underwent definitive chemoradiotherapy (dCRT), while those not achieving CR or near CR underwent surgical resection. RESULTS: Among the 40 eligible patients, 14 (35.0%) achieved a CR or near CR after induction treatment. Of the ten patients achieving a CR or near CR, one developed an esophageal fistula after dCRT (10.0%). Among the eight non-CR or non-near CR patients receiving chemoradiotherapy, six developed esophageal fistula (75.0%). Among the 26 patients who did not achieve CR or near CR after induction treatment, the 1-year cancer specific survival (CSS) rates were 93.3% [95% confidence interval (CI) 0.815-1%] for the 18 patients in the surgery group, and 71.4% (95% CI 0.447-1%) for the 8 patients in the chemoradiotherapy group (p = 0.027). The overall laryngeal preservation rate was 85.0% (34/40), with a functional laryngeal preservation rate of 77.5% (31/40). CONCLUSION: The approach consisting of combined immunotherapy and chemotherapy successfully identified patients who were responding well to induction treatment and who were sensitive to radiotherapy, for chemoradiotherapy; thus, improving laryngeal preservation rates. In addition, it also identified patients with poor responses to induction treatment and radiotherapy, for timely surgery; hence, reducing radiotherapy complications and enhancing survival.

15.
Cardiovasc Diabetol ; 23(1): 186, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812011

RESUMEN

BACKGROUND: Vascular calcification (VC) is an independent risk factor for cardiovascular diseases. Recently, ferroptosis has been recognised as a novel therapeutic target for cardiovascular diseases. Although an association between ferroptosis and vascular calcification has been reported, the role and mechanism of iron overload in vascular calcification are still poorly understood. Specifically, further in-depth research is required on whether metalloproteins SLC39a14 and SLC39a8 are involved in ferroptosis induced by iron overload. METHODS: R language was employed for the differential analysis of the dataset, revealing the correlation between ferroptosis and calcification. The experimental approaches encompassed both in vitro and in vivo studies, incorporating the use of iron chelators and models of iron overload. Additionally, gain- and loss-of-function experiments were conducted to investigate iron's effects on vascular calcification comprehensively. Electron microscopy, immunofluorescence, western blotting, and real-time polymerase chain reaction were used to elucidate how Slc39a14 and Slc39a8 mediate iron overload and promote calcification. RESULTS: Ferroptosis was observed in conjunction with vascular calcification (VC); the association was consistently confirmed by in vitro and in vivo studies. Our results showed a positive correlation between iron overload in VSMCs and calcification. Iron chelators are effective in reversing VC and iron overload exacerbates this process. The expression levels of the metal transport proteins Slc39a14 and Slc39a8 were significantly upregulated during calcification; the inhibition of their expression alleviated VC. Conversely, Slc39a14 overexpression exacerbates calcification and promotes intracellular iron accumulation in VSMCs. CONCLUSIONS: Our research demonstrates that iron overload occurs during VC, and that inhibition of Slc39a14 and Slc39a8 significantly relieves VC by intercepting iron overload-induced ferroptosis in VSMCs, providing new insights into the VC treatment.


Asunto(s)
Proteínas de Transporte de Catión , Modelos Animales de Enfermedad , Ferroptosis , Quelantes del Hierro , Ratones Endogámicos C57BL , Músculo Liso Vascular , Miocitos del Músculo Liso , Calcificación Vascular , Ferroptosis/efectos de los fármacos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Animales , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Músculo Liso Vascular/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Transducción de Señal , Masculino , Humanos , Hierro/metabolismo , Sobrecarga de Hierro/metabolismo , Sobrecarga de Hierro/patología
16.
Osteoporos Int ; 35(1): 53-67, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37698600

RESUMEN

We examined the performance of an intelligent fracture liaison service (FLS) assisted by digital health (DH) to reduce all-cause mortality (ACM) risk. According to our findings, the new FLS reduced ACM by 36%. INTRODUCTION: A well-designed secondary prevention program known as FLS enhances the bone densitometry-based assessment rate as well as osteoporosis (OP) medication usage following a fracture. However, there are only a few reports on FLS incorporating DH, and it remains unclear whether this integration has influenced patient ACM, which refers to the overall death rate from any cause during the study period. METHODS: This retrospective observational study was conducted on data from the Fragility Fracture Registration System database linked to the Regional Health Registration Platform of Kunshan City and the Population Death Registration System of Jiangsu Province for one tertiary-level A hospital in China. Patients aged ≥ 50 years, who experienced an OP fracture between January 1, 2017, and July 27, 2022, requiring hospitalization, were selected for analysis. We compared the outcomes of patients who received routine fragility fracture management (the no-FLS group) or FLS (the FLS group). We employed multivariable Cox regression with inverse probability weighting based on the propensity score (PS). RESULTS: Of 2317 patients, 756 (32.6%) received FLS and 1561 (67.4%) did not. Using PS matching, we minimized the baseline characteristic differences between the two groups in the propensity score-matched samples, relative to the unmatched samples. Based on our analysis, the new FLS reduced ACM by 36% (hazard ratio [HR], 0.64; 95% confidence interval [CI], 0.47 to 0.87; P-value = 0.004). Moreover, FLS patients experienced further reductions in fall-related mortality, refracture rate, and total refracture-related hospital costs, and had increased dual-energy X-ray absorptiometry (DXA) testing and treatment initiation rates, relative to the no-FLS patients. CONCLUSIONS: A new FLS model implementation assisted by DH can effectively reduce ACM among elderly patients with OP fractures requiring surgery. In future investigations, we recommend examining the scalability of this model.


Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis , Fracturas Osteoporóticas , Anciano , Humanos , Fracturas Osteoporóticas/epidemiología , Salud Digital , Conservadores de la Densidad Ósea/uso terapéutico , Osteoporosis/tratamiento farmacológico , Osteoporosis/epidemiología , Absorciometría de Fotón , Prevención Secundaria
17.
Artículo en Inglés | MEDLINE | ID: mdl-38197783

RESUMEN

A Gram-positive, acid-fast, aerobic, rapidly growing and non-motile strain was isolated from lead-zinc mine tailing sampled in Lanping, Yunnan province, Southwest China. 16S rRNA gene sequence analysis showed that the most closely related species of strain KC 300T was Mycolicibacterium litorale CGMCC 4.5724T (98.47 %). Additionally, phylogenomic and specific conserved signature indel analysis revealed that strain KC 300T should be a member of genus Mycolicibacterium, and Mycobacterium palauense CECT 8779T and Mycobacterium grossiae DSM 104744T should also members of genus Mycolicibacterium. The genome size of strain KC 300T was 6.2 Mb with an in silico DNA G+C content of 69.2 mol%. Chemotaxonomic characteristics of strain KC 300T were also consistent with the genus Mycolicibacterium. The average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity values, as well as phenotypic, physiological and biochemical characteristics, support that strain KC 300T represents a new species within the genus Mycolicibacterium, for which the name Mycolicibacterium arseniciresistens sp. nov. is proposed, with the type strain KC 300T (=CGMCC 1.19494T=JCM 35915T). In addition, we reclassified Mycobacterium palauense and Mycobacterium grossiae as Mycolicibacterium palauense comb. nov. and Mycolicibacterium grossiae comb. nov., respectively.


Asunto(s)
Mycobacterium , Zinc , ARN Ribosómico 16S/genética , Composición de Base , China , Filogenia , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Mycobacterium/genética
18.
Eur J Neurol ; 31(10): e16419, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39072930

RESUMEN

BACKGROUND AND PURPOSE: The aim of this study is to investigate the efficacy and safety of preoperative versus intraoperative tirofiban in patients with large vessel occlusion (LVO) due to large artery atherosclerosis (LAA). METHODS: This is a retrospective multicenter cohort study based on the RESCUE-RE (Registration Study for Critical Care of Acute Ischemic Stroke After Recanalization) trial enrolling patients with anterior circulation LVO classified as LAA within 24 h of onset. Patients were divided into three groups: preoperative tirofiban (PT), intraoperative tirofiban (IT), and no tirofiban (NT). Propensity score matching (PSM) was used to balance baseline characteristics. The efficacy outcomes included 90-day functional independence (modified Rankin Scale score = 0-2) and early partial recanalization (EPR; defined as a modified Thrombolysis in Cerebral Infarction score = 1-2a). The safety outcomes included symptomatic intracranial hemorrhage (sICH). RESULTS: A total of 104 matched triplets were obtained through PSM. Compared with NT, PT increased 90-day functional independence (60.8% vs. 42.3%, p = 0.008) and EPR (42.7% vs. 18.3%, p < 0.001) rate, with a tendency to increase the asymptomatic intracranial hemorrhage (aICH) proportion (28.8% vs. 18.3%, p = 0.072). Compared with IT, PT had a higher 90-day functional independence (60.8% vs. 45.2%, p = 0.025) and EPR (42.7% vs. 20.2%, p = 0.001) rate, with no significant difference in sICH (14.4% vs. 7.7%, p = 0.122) and aICH (28.8% vs. 21.2%, p = 0.200). Compared with NT, IT had a lower 90-day mortality rate (9.6% vs. 24.0%, p = 0.005). CONCLUSIONS: Tirofiban shows good adjuvant therapy potential in acute ischemic stroke-LVO due to LAA patients. PT is associated with higher rates of EPR and better therapeutic efficacy. In addition, EPR may be a potential way to improve prognosis.


Asunto(s)
Procedimientos Endovasculares , Trombectomía , Tirofibán , Humanos , Masculino , Tirofibán/administración & dosificación , Tirofibán/uso terapéutico , Femenino , Anciano , Persona de Mediana Edad , Estudios Retrospectivos , Trombectomía/métodos , Procedimientos Endovasculares/métodos , Cuidados Preoperatorios/métodos , Aterosclerosis/complicaciones , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico/cirugía , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Cuidados Intraoperatorios/métodos , Fibrinolíticos/administración & dosificación , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/tratamiento farmacológico , Resultado del Tratamiento
19.
Inorg Chem ; 63(19): 8948-8957, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687980

RESUMEN

Excellent electrocatalytic CO2 reduction reaction activity has been demonstrated by transition metals and nitrogen-codoped carbon (M-N-C) catalysts, especially for transition-metal porphyrin (MTPP)-based catalysts. In this work, we propose to use one-step low-temperature pyrolysis of the isostructural MTPP-based metal-organic frameworks (MOFs) and electrochemical in situ reduction strategies to obtain a series of hybrid catalysts of Co nanoparticles (Co NPs) and MTPP, named Co NPs/MTPP (M = Fe, Co, and Ni). The in situ introduction of Co NPs can efficiently enhance the electrocatalytic ability of MTPP (M = Fe, Co, and Ni) to convert CO2 to CO, particularly for FeTPP. Co NPs/FeTPP endowed a high CO faradaic efficiency (FECOmax = 95.5%) in the H cell, and the FECO > 90.0% is in the broad potential range of -0.72 to -1.22 VRHE. In addition, the Co NPs/FeTPP achieved 145.4 mA cm-2 at a lower potential of -0.70 VRHE with an FECO of 94.7%, and the CO partial currents increased quickly to reach 202.2 mA cm-2 at -0.80 VRHE with an FECO of 91.6% in the flow cell. It is confirmed that Co NPs are necessary for hybrid catalysts to get superior electrocatalytic activity; Co NPs also can accelerate H2O dissociation and boost the proton supply capacity to hasten the proton-coupled electron-transfer process, effectively adjusting the adsorption strength of the reaction intermediates.

20.
Exp Lung Res ; 50(1): 25-41, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419581

RESUMEN

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Lesión Pulmonar , Animales , Humanos , Recién Nacido , Ratones , Animales Recién Nacidos , Displasia Broncopulmonar/etiología , Displasia Broncopulmonar/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/patología , Hiperoxia/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/etiología , Lesión Pulmonar/prevención & control , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-6/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA