Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(4): 635-646, 2023 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-36639896

RESUMEN

Transcranial direct current stimulation (tDCS) is a promising noninvasive neuromodulatory treatment option for multiple neurologic and psychiatric disorders, but its mechanism of action is still poorly understood. Adult hippocampal neurogenesis (AHN) continues throughout life and is crucial for preserving several aspects of hippocampal-dependent cognitive functions. Nevertheless, the contribution of AHN in the neuromodulatory effects of tDCS remains unexplored. Here, we sought to investigate whether multisession anodal tDCS may modulate AHN and its associated cognitive functions. Multisession anodal tDCS were applied on the skull over the hippocampus of adult male mice for 20 min at 0.25 mA once daily for 10 d totally. We found that multisession anodal tDCS enhances AHN by increasing the proliferation, differentiation and survival of neural stem/progenitor cells (NSPCs). In addition, tDCS treatment increased cell cycle reentry and reduced cell cycle exit of NSPCs. The tDCS-treated mice exhibited a reduced GABAergic inhibitory tone in the dentate gyrus compared with sham-treated mice. The effect of tDCS on the proliferation of NSPCs was blocked by pharmacological restoration of GABAB receptor-mediated inhibition. Functionally, multisession anodal tDCS enhances performance on a contextual fear discrimination task, and this enhancement was prevented by blocking AHN using the DNA alkylating agent temozolomide (TMZ). Our results emphasize an important role for AHN in mediating the beneficial effects of tDCS on cognitive functions that substantially broadens the mechanistic understanding of tDCS beyond its well-described in hippocampal synaptic plasticity.SIGNIFICANCE STATEMENT Transcranial direct current stimulation (tDCS) has been shown to effectively enhance cognitive functions in healthy and pathologic conditions. However, the mechanisms underlying its effects are largely unknown and need to be better understood to enable its optimal clinical use. This study shows that multisession anodal tDCS enhances adult hippocampal neurogenesis (AHN) and therefore contributes to enhance context discrimination in mice. Our results also show that the effect of tDCS on AHN is associated with reduced GABAergic inhibition in the dentate gyrus. Our study uncovers a novel mechanism of anodal tDCS to elicit cognitive-enhancing effects and may have the potential to improve cognitive decline associated with normal aging and neurodegenerative disorders.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Masculino , Ratones , Animales , Estimulación Transcraneal de Corriente Directa/métodos , Hipocampo , Plasticidad Neuronal/fisiología , Cognición , Neurogénesis
2.
Adv Exp Med Biol ; 1441: 167-183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38884711

RESUMEN

Formation of the vertebrate heart with its complex arterial and venous connections is critically dependent on patterning of the left-right axis during early embryonic development. Abnormalities in left-right patterning can lead to a variety of complex life-threatening congenital heart defects. A highly conserved pathway responsible for left-right axis specification has been uncovered. This pathway involves initial asymmetric activation of a nodal signaling cascade at the embryonic node, followed by its propagation to the left lateral plate mesoderm and activation of left-sided expression of the Pitx2 transcription factor specifying visceral organ asymmetry. Intriguingly, recent work suggests that cardiac laterality is encoded by intrinsic cell and tissue chirality independent of Nodal signaling. Thus, Nodal signaling may be superimposed on this intrinsic chirality, providing additional instructive cues to pattern cardiac situs. The impact of intrinsic chirality and the perturbation of left-right patterning on myofiber organization and cardiac function warrants further investigation. We summarize recent insights gained from studies in animal models and also some human clinical studies in a brief overview of the complex processes regulating cardiac asymmetry and their impact on cardiac function and the pathogenesis of congenital heart defects.


Asunto(s)
Tipificación del Cuerpo , Cardiopatías Congénitas , Corazón , Humanos , Animales , Corazón/embriología , Corazón/fisiología , Tipificación del Cuerpo/genética , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Transducción de Señal , Regulación del Desarrollo de la Expresión Génica , Proteína Nodal/metabolismo , Proteína Nodal/genética
3.
Neurobiol Dis ; 187: 106311, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37769745

RESUMEN

Hippocampal oxytocin receptor (OXTR) signaling is crucial for discrimination of social stimuli to guide social recognition, but circuit mechanisms and cell types involved remain incompletely understood. Here, we report a role for OXTR-expressing hilar mossy cells (MCs) of the dentate gyrus in social stimulus discrimination by regulating granule cell (GC) activity. Using a Cre-loxP recombination approach, we found that ablation of Oxtr from MCs impairs discrimination of social, but not object, stimuli in adult male mice. Ablation of MC Oxtr increases spontaneous firing rate of GCs, synaptic excitation to inhibition ratio of MC-to-GC circuit, and GC firing when temporally associated with the lateral perforant path inputs. Using mouse hippocampal slices, we found that bath application of OXTR agonist [Thr4,Gly7]-oxytocin causes membrane depolarization and increases MC firing activity. Optogenetic activation of MC-to-GC circuit ameliorates social discrimination deficit in MC OXTR deficient mice. Together, our results uncover a previously unknown role of MC OXTR signaling for discrimination of social stimuli and delineate a MC-to-GC circuit responsible for social information processing.

4.
J Neuroinflammation ; 20(1): 12, 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36681815

RESUMEN

Sepsis-associated brain injury (SABI) is characterized by an acute deterioration of mental status resulting in cognitive impairment and acquisition of new and persistent functional limitations in sepsis survivors. Previously, we reported that septic mice had evidence of axonal injury, robust microglial activation, and cytotoxic edema in the cerebral cortex, thalamus, and hippocampus in the absence of blood-brain barrier disruption. A key conceptual advance in the field was identification of sulfonylurea receptor 1 (SUR1), a member of the adenosine triphosphate (ATP)-binding cassette protein superfamily, that associates with the transient receptor potential melastatin 4 (TRPM4) cation channel to play a crucial role in cerebral edema development. Therefore, we hypothesized that knockout (KO) of Abcc8 (Sur1 gene) is associated with a decrease in microglial activation, cerebral edema, and improved neurobehavioral outcomes in a murine cecal ligation and puncture (CLP) model of sepsis. Sepsis was induced in 4-6-week-old Abcc8 KO and wild-type (WT) littermate control male mice by CLP. We used immunohistochemistry to define neuropathology and microglial activation along with parallel studies using magnetic resonance imaging, focusing on cerebral edema on days 1 and 4 after CLP. Abcc8 KO mice exhibited a decrease in axonal injury and cytotoxic edema vs. WT on day 1. Abcc8 KO mice also had decreased microglial activation in the cerebral cortex vs. WT. These findings were associated with improved spatial memory on days 7-8 after CLP. Our study challenges a key concept in sepsis and suggests that brain injury may not occur merely as an extension of systemic inflammation. We advance the field further and demonstrate that deletion of the SUR1 gene ameliorates CNS pathobiology in sepsis including edema, axonal injury, neuroinflammation, and behavioral deficits. Benefits conferred by Abcc8 KO in the murine CLP model warrant studies of pharmacological Abcc8 inhibition as a new potential therapeutic strategy for SABI.


Asunto(s)
Antineoplásicos , Edema Encefálico , Lesiones Encefálicas , Disfunción Cognitiva , Sepsis , Canales Catiónicos TRPM , Ratones , Masculino , Animales , Ratones Noqueados , Receptores de Sulfonilureas/genética , Edema Encefálico/genética , Sepsis/complicaciones , Sepsis/genética , Sepsis/patología , Lesiones Encefálicas/complicaciones , Punciones , Edema , Ligadura , Ratones Endogámicos C57BL
5.
Crit Care Med ; 51(2): e45-e59, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661464

RESUMEN

OBJECTIVES: Addressing traumatic brain injury (TBI) heterogeneity is increasingly recognized as essential for therapy translation given the long history of failed clinical trials. We evaluated differential effects of a promising treatment (glibenclamide) based on dose, TBI type (patient selection), and imaging endophenotype (outcome selection). Our goal to inform TBI precision medicine is contextually timely given ongoing phase 2/planned phase 3 trials of glibenclamide in brain contusion. DESIGN: Blinded randomized controlled preclinical trial of glibenclamide on MRI endophenotypes in two established severe TBI models: controlled cortical impact (CCI, isolated brain contusion) and CCI+hemorrhagic shock (HS, clinically common second insult). SETTING: Preclinical laboratory. SUBJECTS: Adult male C57BL/6J mice (n = 54). INTERVENTIONS: Mice were randomized to naïve, CCI±HS with vehicle/low-dose (20 µg/kg)/high-dose glibenclamide (10 µg/mouse). Seven-day subcutaneous infusions (0.4 µg/hr) were continued. MEASUREMENTS AND MAIN RESULTS: Serial MRI (3 hr, 6 hr, 24 hr, and 7 d) measured hematoma and edema volumes, T2 relaxation (vasogenic edema), apparent diffusion coefficient (ADC, cellular/cytotoxic edema), and 7-day T1-post gadolinium values (blood-brain-barrier [BBB] integrity). Linear mixed models assessed temporal changes. Marked heterogeneity was observed between CCI versus CCI+HS in terms of different MRI edema endophenotypes generated (all p < 0.05). Glibenclamide had variable impact. High-dose glibenclamide reduced hematoma volume ~60% after CCI (p = 0.0001) and ~48% after CCI+HS (p = 4.1 × 10-6) versus vehicle. Antiedema benefits were primarily in CCI: high-dose glibenclamide normalized several MRI endophenotypes in ipsilateral cortex (all p < 0.05, hematoma volume, T2, ADC, and T1-post contrast). Acute effects (3 hr) were specific to hematoma (p = 0.001) and cytotoxic edema reduction (p = 0.0045). High-dose glibenclamide reduced hematoma volume after TBI with concomitant HS, but antiedema effects were not robust. Low-dose glibenclamide was not beneficial. CONCLUSIONS: High-dose glibenclamide benefitted hematoma volume, vasogenic edema, cytotoxic edema, and BBB integrity after isolated brain contusion. Hematoma and cytotoxic edema effects were acute; longer treatment windows may be possible for vasogenic edema. Our findings provide new insights to inform interpretation of ongoing trials as well as precision design (dose, sample size estimation, patient selection, outcome selection, and Bayesian analysis) of future TBI trials of glibenclamide.


Asunto(s)
Contusión Encefálica , Edema Encefálico , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Animales , Masculino , Ratones , Teorema de Bayes , Contusión Encefálica/complicaciones , Contusión Encefálica/tratamiento farmacológico , Edema Encefálico/diagnóstico por imagen , Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Endofenotipos , Gliburida/farmacología , Gliburida/uso terapéutico , Imagen por Resonancia Magnética , Ratones Endogámicos C57BL
6.
Magn Reson Med ; 90(6): 2362-2374, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37578085

RESUMEN

PURPOSE: Deep learning superresolution (SR) is a promising approach to reduce MRI scan time without requiring custom sequences or iterative reconstruction. Previous deep learning SR approaches have generated low-resolution training images by simple k-space truncation, but this does not properly model in-plane turbo spin echo (TSE) MRI resolution degradation, which has variable T2 relaxation effects in different k-space regions. To fill this gap, we developed a T2 -deblurred deep learning SR method for the SR of 3D-TSE images. METHODS: A SR generative adversarial network was trained using physically realistic resolution degradation (asymmetric T2 weighting of raw high-resolution k-space data). For comparison, we trained the same network structure on previous degradation models without TSE physics modeling. We tested all models for both retrospective and prospective SR with 3 × 3 acceleration factor (in the two phase-encoding directions) of genetically engineered mouse embryo model TSE-MR images. RESULTS: The proposed method can produce high-quality 3 × 3 SR images for a typical 500-slice volume with 6-7 mouse embryos. Because 3 × 3 SR was performed, the image acquisition time can be reduced from 15 h to 1.7 h. Compared to previous SR methods without TSE modeling, the proposed method achieved the best quantitative imaging metrics for both retrospective and prospective evaluations and achieved the best imaging-quality expert scores for prospective evaluation. CONCLUSION: The proposed T2 -deblurring method improved accuracy and image quality of deep learning-based SR of TSE MRI. This method has the potential to accelerate TSE image acquisition by a factor of up to 9.


Asunto(s)
Aprendizaje Profundo , Animales , Ratones , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Imagenología Tridimensional/métodos
7.
Adv Exp Med Biol ; 1396: 53-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36454459

RESUMEN

Congenital heart disease (CHD) has a strong genetic etiology, making it a likely candidate for therapeutic intervention using genetic editing. Complex genetics involving an orchestrated series of genetic events and over 400 genes are responsible for myocardial development. Cooperation is required from a vast series of genetic networks, and mutations in such can lead to CHD and cardiovascular abnormalities, affecting up to 1% of all live births. Genome editing technologies are becoming better studied and with time and improved logistics, CHD could be a prime therapeutic target. Syndromic, nonsyndromic, and cases of familial inheritance all involve identifiable causative mutations and thus have the potential for genome editing therapy. Mouse models are well-suited to study and predict clinical outcome. This review summarizes the anatomical and genetic timeline of myocardial development in both mice and humans, the potential of gene editing in typical CHD categories, as well as the use of mice thus far in reproducing models of human CHD and correcting the mutations that create them.


Asunto(s)
Edición Génica , Redes Reguladoras de Genes , Humanos , Ratones , Animales , Mutación , Modelos Animales de Enfermedad , Patrón de Herencia
8.
Circulation ; 144(8): 615-637, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34157861

RESUMEN

BACKGROUND: Many patients with heart failure with preserved ejection fraction have metabolic syndrome and develop exercise-induced pulmonary hypertension (EIPH). Increases in pulmonary vascular resistance in patients with heart failure with preserved ejection fraction portend a poor prognosis; this phenotype is referred to as combined precapillary and postcapillary pulmonary hypertension (CpcPH). Therapeutic trials for EIPH and CpcPH have been disappointing, suggesting the need for strategies that target upstream mechanisms of disease. This work reports novel rat EIPH models and mechanisms of pulmonary vascular dysfunction centered around the transcriptional repression of the soluble guanylate cyclase (sGC) enzyme in pulmonary artery (PA) smooth muscle cells. METHODS: We used obese ZSF-1 leptin-receptor knockout rats (heart failure with preserved ejection fraction model), obese ZSF-1 rats treated with SU5416 to stimulate resting pulmonary hypertension (obese+sugen, CpcPH model), and lean ZSF-1 rats (controls). Right and left ventricular hemodynamics were evaluated using implanted catheters during treadmill exercise. PA function was evaluated with magnetic resonance imaging and myography. Overexpression of nuclear factor Y α subunit (NFYA), a transcriptional enhancer of sGC ß1 subunit (sGCß1), was performed by PA delivery of adeno-associated virus 6. Treatment groups received the SGLT2 inhibitor empagliflozin in drinking water. PA smooth muscle cells from rats and humans were cultured with palmitic acid, glucose, and insulin to induce metabolic stress. RESULTS: Obese rats showed normal resting right ventricular systolic pressures, which significantly increased during exercise, modeling EIPH. Obese+sugen rats showed anatomic PA remodeling and developed elevated right ventricular systolic pressure at rest, which was exacerbated with exercise, modeling CpcPH. Myography and magnetic resonance imaging during dobutamine challenge revealed PA functional impairment of both obese groups. PAs of obese rats produced reactive oxygen species and decreased sGCß1 expression. Mechanistically, cultured PA smooth muscle cells from obese rats and humans with diabetes or treated with palmitic acid, glucose, and insulin showed increased mitochondrial reactive oxygen species, which enhanced miR-193b-dependent RNA degradation of nuclear factor Y α subunit (NFYA), resulting in decreased sGCß1-cGMP signaling. Forced NYFA expression by adeno-associated virus 6 delivery increased sGCß1 levels and improved exercise pulmonary hypertension in obese+sugen rats. Treatment of obese+sugen rats with empagliflozin improved metabolic syndrome, reduced mitochondrial reactive oxygen species and miR-193b levels, restored NFYA/sGC activity, and prevented EIPH. CONCLUSIONS: In heart failure with preserved ejection fraction and CpcPH models, metabolic syndrome contributes to pulmonary vascular dysfunction and EIPH through enhanced reactive oxygen species and miR-193b expression, which downregulates NFYA-dependent sGCß1 expression. Adeno-associated virus-mediated NFYA overexpression and SGLT2 inhibition restore NFYA-sGCß1-cGMP signaling and ameliorate EIPH.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Insuficiencia Cardíaca/etiología , Hipertensión Pulmonar/complicaciones , Hipertensión Pulmonar/etiología , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , MicroARNs/genética , Especies Reactivas de Oxígeno/metabolismo , Guanilil Ciclasa Soluble/genética , Animales , Animales Modificados Genéticamente , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Ejercicio Físico , Regulación de la Expresión Génica , Insuficiencia Cardíaca/diagnóstico , Humanos , Síndrome Metabólico/complicaciones , Mitocondrias Cardíacas , Miocitos del Músculo Liso/metabolismo , Fenotipo , Ratas , Transducción de Señal , Estrés Fisiológico , Volumen Sistólico , Disfunción Ventricular Derecha
9.
Hum Mol Genet ; 29(18): 3064-3080, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32886109

RESUMEN

ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Hígado/crecimiento & desarrollo , Proteínas Musculares/genética , Factores de Transcripción/genética , Animales , Conductos Biliares/crecimiento & desarrollo , Conductos Biliares/metabolismo , Conductos Biliares/patología , Diferenciación Celular/genética , Ciliopatías/genética , Ciliopatías/metabolismo , Ciliopatías/patología , Humanos , Hígado/anomalías , Hígado/metabolismo , Hígado/patología , Ratones , Ratones Noqueados , Morfogénesis/genética , Transducción de Señal/genética , Factores de Transcripción de Dominio TEA , Proteínas Señalizadoras YAP
10.
Mol Genet Metab ; 137(4): 342-348, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36335793

RESUMEN

GM3 synthase (GM3S) deficiency is a rare neurodevelopmental disorder caused by an inability to synthesize gangliosides, for which there is currently no treatment. Gangliosides are brain-enriched, plasma membrane glycosphingolipids with poorly understood biological functions related to cell adhesion, growth, and receptor-mediated signal transduction. Here, we investigated the effects of GM3S deficiency on metabolism and mitochondrial function in a mouse model. By indirect calorimetry, GM3S knockout mice exhibited increased whole-body respiration and an increased reliance upon carbohydrate as an energy source. 18F-FDG PET confirmed higher brain glucose uptake in knockout mice, and GM3S deficient N41 neuronal cells showed higher glucose utilization in vitro. Brain mitochondria from knockout mice respired at a higher rate on Complex I substrates including pyruvate. This appeared to be due to higher expression of pyruvate dehydrogenase (PDH) and lower phosphorylation of PDH, which would favor pyruvate entry into the mitochondrial TCA cycle. Finally, it was observed that blocking glucose metabolism with the glycolysis inhibitor 2-deoxyglucose reduced seizure intensity in GM3S knockout mice following administration of kainate. In conclusion, GM3S deficiency may be associated with a hypermetabolic phenotype that could promote seizure activity.


Asunto(s)
Glucosa , Sialiltransferasas , Animales , Ratones , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Gangliósido G(M3)/metabolismo , Glucosa/metabolismo , Ratones Noqueados , Ácido Pirúvico , Convulsiones/genética , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
11.
J Vasc Surg ; 76(4): 1060-1065, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35697313

RESUMEN

OBJECTIVE: Balloon-assisted maturation (BAM) by an endovascular method plays an important role in treating an immature arteriovenous fistula. However, the results between radiocephalic fistula and brachiocephalic fistula were rarely reported. This retrospective study aimed to investigate the effectiveness and outcome of BAM in different sites of autogenous arteriovenous fistulas. METHODS: This single-center retrospective study included patients who underwent BAM procedures from January 2015 to December 2016. Of 148 patients, 117 and 31 patients had a radiocephalic fistula (RC) and a brachiocephalic fistula (BC), respectively. The primary outcome was BAM success. Data regarding fistula lesions, balloon types and size, frequency of procedures, and maturation time were collected for BAMs. The secondary outcome was the patency of a fistula in the follow-up period. RESULTS: No difference was observed in procedure of BAM frequency between the RC and BC groups. The total success rate was 77.7%, without significant difference between the RC and BC groups (81.20% vs 64.50%; P = .055). Within the procedures, the culprit lesion of juxta-anastomosis segment (73.5% vs 25.5%; P < .001) and arterial inlet (21.2% vs 7.8%; P = .04) were more common in the RC group, whereas the venous outlet was more common in the BC group (88.2% vs 57.7%; P < .001). Both groups had an equivalent patency rate after the BAM within the follow-up period (P = .272). CONCLUSIONS: BAM was an effective procedure for immature fistulas, without significant difference between RCs and BCs. Through the procedure, the culprit lesions causing non-maturation were found to be different between the two groups. The patency rate between the two groups after surgery seems to be equivalent within the follow-up period.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Fístula , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Humanos , Arteria Radial/diagnóstico por imagen , Arteria Radial/cirugía , Diálisis Renal , Estudios Retrospectivos , Factores de Tiempo , Resultado del Tratamiento , Grado de Desobstrucción Vascular
12.
Nat Chem Biol ; 16(3): 278-290, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080625

RESUMEN

Ferroptotic death is the penalty for losing control over three processes-iron metabolism, lipid peroxidation and thiol regulation-that are common in the pro-inflammatory environment where professional phagocytes fulfill their functions and yet survive. We hypothesized that redox reprogramming of 15-lipoxygenase (15-LOX) during the generation of pro-ferroptotic signal 15-hydroperoxy-eicosa-tetra-enoyl-phosphatidylethanolamine (15-HpETE-PE) modulates ferroptotic endurance. Here, we have discovered that inducible nitric oxide synthase (iNOS)/NO•-enrichment of activated M1 (but not alternatively activated M2) macrophages/microglia modulates susceptibility to ferroptosis. Genetic or pharmacologic depletion/inactivation of iNOS confers sensitivity on M1 cells, whereas NO• donors empower resistance of M2 cells to ferroptosis. In vivo, M1 phagocytes, in comparison to M2 phagocytes, exert higher resistance to pharmacologically induced ferroptosis. This resistance is diminished in iNOS-deficient cells in the pro-inflammatory conditions of brain trauma or the tumour microenvironment. The nitroxygenation of eicosatetraenoyl (ETE)-PE intermediates and oxidatively truncated species by NO• donors and/or suppression of NO• production by iNOS inhibitors represent a novel redox mechanism of regulation of ferroptosis in pro-inflammatory conditions.


Asunto(s)
Ferroptosis/fisiología , Macrófagos/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/fisiología , Muerte Celular , Femenino , Hierro/metabolismo , Hierro/fisiología , Leucotrienos/metabolismo , Peroxidación de Lípido/fisiología , Peróxidos Lipídicos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/fisiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
13.
J Am Soc Nephrol ; 32(3): 553-562, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33514560

RESUMEN

BACKGROUND: Damage to the renal microvasculature is a hallmark of renal ischemia-reperfusion injury (IRI)-mediated AKI. The miR-17∼92 miRNA cluster (encoding miR-17, -18a, -19a, -20a, -19b-1, and -92a-1) regulates angiogenesis in multiple settings, but no definitive role in renal endothelium during AKI pathogenesis has been established. METHODS: Antibodies bound to magnetic beads were utilized to selectively enrich for renal endothelial cells from mice. Endothelial-specific miR-17∼92 knockout (miR-17∼92endo-/- ) mice were generated and given renal IRI. Mice were monitored for the development of AKI using serum chemistries and histology and for renal blood flow using magnetic resonance imaging (MRI) and laser Doppler imaging. Mice were treated with miRNA mimics during renal IRI, and therapeutic efficacies were evaluated. RESULTS: miR-17, -18a, -20a, -19b, and pri-miR-17∼92 are dynamically regulated in renal endothelial cells after renal IRI. miR-17∼92endo-/- exacerbates renal IRI in male and female mice. Specifically, miR-17∼92endo-/- promotes renal tubular injury, reduces renal blood flow, promotes microvascular rarefaction, increases renal oxidative stress, and promotes macrophage infiltration to injured kidneys. The potent antiangiogenic factor thrombospondin 1 (TSP1) is highly expressed in renal endothelium in miR-17∼92endo-/- after renal IRI and is a target of miR-18a and miR-19a/b. miR-17∼92 is critical in the angiogenic response after renal IRI, which treatment with miR-18a and miR-19b mimics can mitigate. CONCLUSIONS: These data suggest that endothelial-derived miR-17∼92 stimulates a reparative response in damaged renal vasculature during renal IRI by regulating angiogenic pathways.


Asunto(s)
Riñón/irrigación sanguínea , Riñón/lesiones , MicroARNs/genética , Neovascularización Fisiológica/genética , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/terapia , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/agonistas , MicroARNs/metabolismo , Imitación Molecular , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo
14.
Mol Genet Metab ; 134(1-2): 156-163, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34556413

RESUMEN

Acyl CoA Dehydrogenase 9 (ACAD9) is a member of the family of flavoenzymes that catalyze the dehydrogenation of acyl-CoAs to 2,3 enoyl-CoAs in mitochondrial fatty acid oxidation (FAO). Inborn errors of metabolism of all family members, including ACAD9, have been described in humans, and represent significant causes of morbidity and mortality particularly in children. ACAD9 deficiency leads to a combined defect in fatty acid oxidation and oxidative phosphorylation (OXPHOS) due to a dual role in the pathways. In addition to its function in mitochondrial FAO, ACAD9 has a second function as one of 14 factors responsible for assembly of complex I of the electron transport chain (ETC). Considerable controversy remains over the relative role of these two functions in normal physiology and the disparate clinical findings described in patients with ACAD9 deficiency. To better understand the normal function of ACAD9 and the pathophysiology of its deficiency, several knock out mouse models were developed. Homozygous total body knock out appeared to be lethal as no ACAD9 animals were obtained. Cre-lox technology was then used to generate tissue-specific deletion of the gene. Cardiac-specific ACAD9 deficient animals had severe neonatal cardiomyopathy and died by 17 days of age. They had severe mitochondrial dysfunction in vitro. Muscle-specific mutants were viable but exhibited muscle weakness. Additional studies of heart muscle from the cardiac specific deficient animals were used to examine the evolutionarily conserved signaling Intermediate in toll pathway (ECSIT) protein, a known binding partner of ACAD9 in the electron chain complex I assembly pathway. As expected, ECSIT levels were significantly reduced in the absence of ACAD9 protein, consistent with the demonstrated impairment of the complex I assembly. The various ACAD9 deficient animals should serve as useful models for development of novel therapeutics for this disorder.


Asunto(s)
Acidosis/genética , Acidosis/fisiopatología , Acil-CoA Deshidrogenasa/deficiencia , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/fisiopatología , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/fisiopatología , Modelos Animales de Enfermedad , Ratones , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/fisiopatología , Debilidad Muscular/genética , Debilidad Muscular/fisiopatología , Acidosis/complicaciones , Acil-CoA Deshidrogenasa/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Animales , Cardiomiopatías/etiología , Cardiomiopatías/genética , Cardiomiopatía Hipertrófica/complicaciones , Complejo I de Transporte de Electrón/genética , Enfermedades Mitocondriales/complicaciones , Debilidad Muscular/complicaciones , Mutación
15.
Am J Respir Crit Care Med ; 201(8): 934-945, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31834999

RESUMEN

Rationale: The role of FSTL-1 (follistatin-like 1) in lung homeostasis is unknown.Objectives: We aimed to define the impact of FSTL-1 attenuation on lung structure and function and to identify FSTL-1-regulated transcriptional pathways in the lung. Further, we aimed to analyze the association of FSTL-1 SNPs with lung disease.Methods: FSTL-1 hypomorphic (FSTL-1 Hypo) mice underwent lung morphometry, pulmonary function testing, and micro-computed tomography. Fstl1 expression was determined in wild-type lung cell populations from three independent research groups. RNA sequencing of wild-type and FSTL-1 Hypo mice identified FSTL-1-regulated gene expression, followed by validation and mechanistic in vitro examination. FSTL1 SNP analysis was performed in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease) cohort.Measurements and Main Results: FSTL-1 Hypo mice developed spontaneous emphysema, independent of smoke exposure. Fstl1 is highly expressed in the lung by mesenchymal and endothelial cells but not immune cells. RNA sequencing of whole lung identified 33 FSTL-1-regulated genes, including Nr4a1, an orphan nuclear hormone receptor that negatively regulates NF-κB (nuclear factor-κB) signaling. In vitro, recombinant FSTL-1 treatment of macrophages attenuated NF-κB p65 phosphorylation in an Nr4a1-dependent manner. Within the COPDGene cohort, several SNPs in the FSTL1 region corresponded to chronic obstructive pulmonary disease and lung function.Conclusions: This work identifies a novel role for FSTL-1 protecting against emphysema development independent of smoke exposure. This FSTL-1-deficient emphysema implicates regulation of immune tolerance in lung macrophages through Nr4a1. Further study of the mechanisms involving FSTL-1 in lung homeostasis, immune regulation, and NF-κB signaling may provide additional insight into the pathophysiology of emphysema and inflammatory lung diseases.


Asunto(s)
Proteínas Relacionadas con la Folistatina/genética , Pulmón/diagnóstico por imagen , Enfisema Pulmonar/genética , Humo/efectos adversos , Animales , Células Endoteliales/metabolismo , Proteínas Relacionadas con la Folistatina/farmacología , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Técnicas In Vitro , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Mutación , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/efectos de los fármacos , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Polimorfismo de Nucleótido Simple , Tomografía Computarizada por Tomografía de Emisión de Positrones , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfisema Pulmonar/diagnóstico por imagen , Enfisema Pulmonar/metabolismo , Tomografía Computarizada por Tomografía Computarizada de Emisión de Fotón Único , Nicotiana , Factor de Transcripción ReIA/efectos de los fármacos , Factor de Transcripción ReIA/metabolismo , Microtomografía por Rayos X
16.
Chemistry ; 26(36): 8101-8104, 2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32130743

RESUMEN

The alkaline earth metals (M=Mg, Ca, Sr, and Ba) exhibit a +2 oxidation state in nearly all known stable compounds, but MI dimeric complexes with M-M bonding, [M2 (en)2 ]2+ , (en=ethylenediamine) of all these metals can be stabilized within the galleries of donor-type graphite intercalation compounds (GICs). These metals can also form GICs with more conventional metal (II) ion complexes, [M(en)2 ]2+ . Here, the facile interconversion between dimeric-MI and monomeric-MII intercalates upon the addition/removal of en are reported. Thermogravimetry, powder X-ray diffraction, and pair distribution function analysis of total scattering data support the presence of either [M2 (en)2 ]2+ or [M(en)2 ]2+ guests. This phase conversion requires coupling graphene and metal redox centers, with associated reversible M-M bond formation within graphene galleries. This chemistry allows the facile isolation of unusual oxidation states, reveals M0 →M2+ reaction pathways, and present new opportunities in the design of hybrid conversion/intercalation materials for applications such as charge storage.

17.
Cardiovasc Ultrasound ; 18(1): 9, 2020 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-32164714

RESUMEN

BACKGROUND: Traditional preclinical echocardiography (ECHO) modalities, including 1-dimensional motion-mode (M-Mode) and 2-dimensional long axis (2D-US), rely on geometric and temporal assumptions about the heart for volumetric measurements. Surgical animal models, such as the mouse coronary artery ligation (CAL) model of myocardial infarction, result in morphologic changes that do not fit these geometric assumptions. New ECHO technology, including 4-dimensional ultrasound (4D-US), improves on these traditional models. This paper aims to compare commercially available 4D-US to M-mode and 2D-US in a mouse model of CAL. METHODS: 37 mice underwent CAL surgery, of which 32 survived to a 4 week post-operative time point. ECHO was completed at baseline, 1 week, and 4 weeks after CAL. M-mode, 2D-US, and 4D-US were taken at each time point and evaluated by two separate echocardiographers. At 4 weeks, a subset (n = 12) of mice underwent cardiac magnetic resonance (CMR) imaging to serve as a reference standard. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were compared among imaging modalities. Hearts were also collected for histologic evaluation of scar size (n = 16) and compared to ECHO-derived wall motion severity index (WMSI) and global longitudinal strain as well as gadolinium-enhanced CMR to compare scar assessment modalities. RESULTS: 4D-US provides close agreement of ESV (Bias: -2.55%, LOA: - 61.55 to 66.66) and EF (US Bias: 11.23%, LOA - 43.10 to 102.8) 4 weeks after CAL when compared to CMR, outperforming 2D-US and M-mode estimations. 4D-US has lower inter-user variability as measured by intraclass correlation (ICC) in the evaluation of EDV (0.91) and ESV (0.93) when compared to other modalities. 4D-US also allows for rapid assessment of WMSI, which correlates strongly with infarct size by histology (r = 0.77). CONCLUSION: 4D-US outperforms M-Mode and 2D-US for volumetric analysis 4 weeks after CAL and has higher inter-user reliability. 4D-US allows for rapid calculation of WMSI, which correlates well with histologic scar size.


Asunto(s)
Volumen Cardíaco/fisiología , Ecocardiografía Tetradimensional/métodos , Infarto del Miocardio/diagnóstico , Función Ventricular Izquierda/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Infarto del Miocardio/fisiopatología , Curva ROC
18.
Neuromodulation ; 23(3): 399-406, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31840383

RESUMEN

OBJECTIVE: To investigate whether indicators of cortical excitability are good biomarkers of seizure controllability in temporal lobe epilepsy (TLE). MATERIALS AND METHODS: Three groups of subjects were recruited: those with poorly controlled (PC) TLE (N = 41), well-controlled (WC) TLE (N = 71), and healthy controls (N = 44). Short- and long-latency recovery curves were obtained by paired-pulse transcranial magnetic stimulation. Linear mixed effect models were used to study the effects of group, interstimulus interval (ISI), and antiepileptic drugs on long-interval intracortical inhibition (LICI) and short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). RESULTS: The mixed effect model that did not incorporate antiepileptic drugs showed that group and ISI were significant factors for LICI and SICI/ICF. LICI in the healthy control group was greater than in the two epilepsy groups, and the difference was significant at ISIs of 50, 150, and 200 msec. In contrast, SICI/ICF in the PC group was greater than in the healthy control and WC groups, and the difference was significant at an ISI of 15 msec. However, due to large variance, it was difficult to identify a cutoff value with both good sensitivity and good specificity. Incorporating the information of antiepileptic drugs to the mixed effect model did not change the overall results. CONCLUSIONS: Although LICI and SICI/ICF parameters were significantly different at the group level, they may not be suitable biomarkers for the controllability of TLE at the subject level.


Asunto(s)
Excitabilidad Cortical , Epilepsia Refractaria/fisiopatología , Epilepsia del Lóbulo Temporal/fisiopatología , Convulsiones/fisiopatología , Estimulación Magnética Transcraneal/métodos , Adulto , Anticonvulsivantes/uso terapéutico , Corteza Cerebral/fisiopatología , Excitabilidad Cortical/efectos de los fármacos , Epilepsia Refractaria/tratamiento farmacológico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Convulsiones/prevención & control , Resultado del Tratamiento
19.
Pediatr Cardiol ; 39(6): 1069-1081, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29569026

RESUMEN

Hypoplastic left heart syndrome (HLHS) is one of the most lethal congenital heart defects, and remains clinically challenging. While surgical palliation allows most HLHS patients to survive their critical heart disease with a single-ventricle physiology, many will suffer heart failure, requiring heart transplantation as the only therapeutic course. Current paradigm suggests HLHS is largely of hemodynamic origin, but recent findings from analysis of the first mouse model of HLHS showed intrinsic cardiomyocyte proliferation and differentiation defects underlying the left ventricular (LV) hypoplasia. The findings of similar defects of lesser severity in the right ventricle suggest this could contribute to the heart failure risks in surgically palliated HLHS patients. Analysis of 8 independent HLHS mouse lines showed HLHS is genetically heterogeneous and multigenic in etiology. Detailed analysis of the Ohia mouse line accompanied by validation studies in CRISPR gene-targeted mice revealed a digenic etiology for HLHS. Mutation in Sap130, a component of the HDAC repressor complex, was demonstrated to drive the LV hypoplasia, while mutation in Pcdha9, a protocadherin cell adhesion molecule played a pivotal role in the valvular defects associated with HLHS. Based on these findings, we propose a new paradigm in which complex CHD such as HLHS may arise in a modular fashion, mediated by multiple mutations. The finding of intrinsic cardiomyocyte defects would suggest hemodynamic intervention may not rescue LV growth. The profound genetic heterogeneity and oligogenic etiology indicated for HLHS would suggest that the genetic landscape of HLHS may be complex and more accessible in clinical studies built on a familial study design.


Asunto(s)
Síndrome del Corazón Izquierdo Hipoplásico/genética , Mutación , Miocitos Cardíacos/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Modelos Animales de Enfermedad , Ecocardiografía Doppler en Color , Humanos , Síndrome del Corazón Izquierdo Hipoplásico/patología , Síndrome del Corazón Izquierdo Hipoplásico/fisiopatología , Ratones , Ratones Mutantes
20.
Magn Reson Med ; 77(2): 603-612, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-26843524

RESUMEN

PURPOSE: Diffusion MRI provides a noninvasive way to assess tissue microstructure. Based on diffusion MRI, we propose a model-free method called restricted diffusion imaging (RDI) to quantify restricted diffusion and correlate it with cellularity. THEORY AND METHODS: An analytical relation between q-space signals and the density of restricted spins was derived to quantify restricted diffusion. A phantom study was conducted to investigate the performance of RDI, and RDI was applied to an animal study to assess immune cell infiltration in myocardial tissues with ischemia-reperfusion injury. RESULTS: Our phantom study showed a correlation coefficient of 0.998 between cell density and the restricted diffusion quantified by RDI. The animal study also showed that the high-value regions in RDI matched well with the macrophage infiltration areas in the H&E stained slides. In comparison with diffusion tensor imaging (DTI), RDI exhibited its outperformance to detect macrophage infiltration and delineate inflammatory myocardium. CONCLUSION: RDI can be used to reveal cell density and detect immune cell infiltration. RDI exhibits better specificity than the diffusivity measurement derived from DTI. Magn Reson Med 77:603-612, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Rastreo Celular/métodos , Imagen de Difusión por Resonancia Magnética/métodos , Interpretación de Imagen Asistida por Computador/métodos , Macrófagos/patología , Daño por Reperfusión Miocárdica/patología , Infiltración Neutrófila/inmunología , Animales , Imagen de Difusión por Resonancia Magnética/instrumentación , Aumento de la Imagen/métodos , Macrófagos/inmunología , Masculino , Daño por Reperfusión Miocárdica/diagnóstico por imagen , Daño por Reperfusión Miocárdica/inmunología , Fantasmas de Imagen , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA