Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Imaging Inform Med ; 37(1): 209-229, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38343263

RESUMEN

The purpose of this study is to predict the mRNA expression of CSF1R in HGG non-invasively using MRI (magnetic resonance imaging) omics technology and to evaluate the correlation between the established radiomics model and prognosis. We investigated the predictive value of CSF1R in the Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA) database. The Support vector machine (SVM) and the Logistic regression (LR) algorithms were used to create a radiomics_score (Rad_score), respectively. The effectiveness and performance of the radiomics model was assessed in the training (n = 89) and tenfold cross-validation sets. We further analyzed the correlation between Rad_score and macrophage-related genes using Spearman correlation analysis. A radiomics nomogram combining the clinical factors and Rad_score was constructed to validate the radiomic signatures for individualized survival estimation and risk stratification. The results showed that CSF1R expression was markedly elevated in HGG tissues, which was related to worse prognosis. CSF1R expression was closely related to the abundance of infiltrating immune cells, such as macrophages. We identified nine features for establishing a radiomics model. The radiomics model predicting CSF1R achieved high AUC in training (0.768 in SVM and 0.792 in LR) and tenfold cross-validation sets (0.706 in SVM and 0.717 in LR). Rad_score was highly associated with tumor-related macrophage genes. A radiomics nomogram combining the Rad_score and clinical factors was constructed and revealed satisfactory performance. MRI-based Rad_score is a novel way to predict CSF1R expression and prognosis in high-grade glioma patients. The radiomics nomogram could optimize individualized survival estimation for HGG patients.

2.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826287

RESUMEN

The cell-type specific role of the vascular endothelial growth factors (VEGFs) in the pathogenesis of Alzheimer's disease (AD) is not well characterized. In this study, we utilized a single-nucleus RNA sequencing dataset from Dorsolateral Prefrontal Cortex (DLFPC) of 424 donors from the Religious Orders Study and Memory and Aging Project (ROS/MAP) to investigate the effect of 10 VEGF genes ( VEGFA, VEGFB, VEGFC, VEGFD, PGF, FLT1, FLT4, KDR, NRP1 , and NRP2 ) on AD endophenotypes. Mean age of death was 89 years, among which 68% were females, and 52% has AD dementia. Negative binomial mixed models were used for differential expression analysis and for association analysis with ß-amyloid load, PHF tau tangle density, and both cross-sectional and longitudinal global cognitive function. Intercellular VEGF-associated signaling was profiled using CellChat. We discovered prefrontal cortical FLT1 expression was upregulated in AD brains in both endothelial and microglial cells. Higher FLT1 expression was also associated with worse cross-sectional global cognitive function, longitudinal cognitive trajectories, and ß-amyloid load. Similarly, higher endothelial FLT4 expression was associated with more ß-amyloid load. In contrast to the receptors, VEGFB showed opposing effects on ß-amyloid load whereby higher levels in oligodendrocytes was associated with high amyloid burden, while higher levels in inhibitory neurons was associated with lower amyloid burden. Finally, AD cells showed significant reduction in overall VEGF signaling comparing to those from cognitive normal participants. Our results highlight key changes in VEGF receptor expression in endothelial and microglial cells during AD, and the potential protective role of VEGFB in neurons.

3.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260300

RESUMEN

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA