Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cancer Cell Int ; 24(1): 53, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38310291

RESUMEN

Ovarian cancer (OV) is the most lethal gynecological malignancy worldwide, with high recurrence rates. Anoikis, a newly-acknowledged form of programmed cell death, plays an essential role in cancer progression, though studies focused on prognostic patterns of anoikis in OV are still lacking. We filtered 32 potential anoikis-related genes (ARGs) among the 6406 differentially expressed genes (DEGs) between the 180 normal controls and 376 TCGA-OV samples. Through the LASSO-Cox analysis, a 2-gene prognostic signature, namely AKT2, and DAPK1, was finally distinguished. We then demonstrated the promising prognostic value of the signature through the K-M survival analysis and time-dependent ROC curves (p-value < 0.05). Moreover, based on the signature and clinical features, we constructed and validated a nomogram model for 1-year, 3-year, and 5-year overall survival, with reliable prognostic values in both TCGA-OV training cohort (p-value < 0.001) and ICGC-OV validation cohort (p-value = 0.030). We evaluated the tumor immune landscape through the CIBERSORT algorithm, which indicated the upregulation of resting Myeloid Dendritic Cells (DCs), memory B cells, and naïve B cells and high expression of key immune checkpoint molecules (CD274 and PDCD1LG2) in the high-risk group. Interestingly, the high-risk group exhibited better sensitivity toward immunotherapy and less sensitivity toward chemotherapies, including Cisplatin and Bleomycin. Especially, based on the IHC of tissue microarrays among 125 OV patients at our institution, we reported that aberrant upregulation of DAPK1 was related to poor prognosis. Conclusively, the anoikis-related signature was a promising tool to evaluate prognosis and predict therapy responses, thus assisting decision-making in the realm of OV precision medicine.

2.
BMC Cancer ; 24(1): 267, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408960

RESUMEN

PURPOSE: Significant advancements in improving ovarian cancer (OC) outcomes have been limited over the past decade. To predict prognosis and improve outcomes of OC, we plan to develop and validate a robust prognosis signature based on blood features. METHODS: We screened age and 33 blood features from 331 OC patients. Using ten machine learning algorithms, 88 combinations were generated, from which one was selected to construct a blood risk score (BRS) according to the highest C-index in the test dataset. RESULTS: Stepcox (both) and Enet (alpha = 0.7) performed the best in the test dataset with a C-index of 0.711. Meanwhile, the low RBS group possessed observably prolonged survival in this model. Compared to traditional prognostic-related features such as age, stage, grade, and CA125, our combined model had the highest AUC values at 3, 5, and 7 years. According to the results of the model, BRS can provide accurate predictions of OC prognosis. BRS was also capable of identifying various prognostic stratifications in different stages and grades. Importantly, developing the nomogram may improve performance by combining BRS and stage. CONCLUSION: This study provides a valuable combined machine-learning model that can be used for predicting the individualized prognosis of OC patients.


Asunto(s)
Nomogramas , Neoplasias Ováricas , Humanos , Femenino , Adulto , Pronóstico , Neoplasias Ováricas/diagnóstico , Neoplasias Ováricas/cirugía , Algoritmos , Aprendizaje Automático
3.
Cancer Cell Int ; 23(1): 232, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803446

RESUMEN

Ovarian cancer (OV) is the most lethal gynecological malignancies worldwide. The coagulation cascade could induce tumor cell infiltration and contribute to OV progression. However, coagulation-related gene (CRG) signature for OV prognosis hasn't been determined yet. In this study, we evaluated the prognostic value of coagulation scores through receiver operating characteristics (ROC) analysis and K-M curves, among OV patients at our institution. Based on the transcriptome data of TCGA-OV cohort, we stratified two coagulation-related subtypes with distinct differences in prognosis and tumor immune microenvironment (p < 0.05). Moreover, from the 6406 differentially-expressed genes (DEGs) between the GTEx (n = 180) and TCGA-OV cohorts (n = 376), we identified 138 potential CRGs. Through LASSO-Cox algorithm, we finally distinguished a 3-gene signature (SERPINA10, CD38, and ZBTB16), with promising prognostic ability in both TCGA (p < 0.001) and ICGC cohorts (p = 0.040). Stepwise, we constructed a nomogram based on the clinical features and coagulation-related signature for overall survival prediction, with the C-index of 0.6761, which was evaluated by calibration curves. Especially, based on tissue microarrays analysis, Quantitative real-time fluorescence PCR (qRT-PCR), and Western Blot, we found that aberrant upregulation of CRGs was related to poor prognosis in OV at both mRNA and protein level (p < 0.05). Collectively, the coagulation-related signature was a robust prognostic biomarker, which could provide therapeutic benefits for chemotherapy/immunotherapy and assist clinical decision in OV patients.

4.
J Ovarian Res ; 16(1): 6, 2023 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-36611214

RESUMEN

As a kind of gynecological tumor, ovarian cancer is not as common as cervical cancer and breast cancer, but its malignant degree is higher. Despite the increasingly mature treatment of ovarian cancer, the five-year survival rate of patients is still less than 50%. Based on the concept of synthetic lethality, poly (ADP- ribose) polymerase (PARP) inhibitors target tumor cells with defects in homologous recombination repair(HRR), the most significant being the target gene Breast cancer susceptibility genes(BRCA). PARP inhibitors capture PARP-1 protein at the site of DNA damage to destroy the original reaction, causing the accumulation of PARP-DNA nucleoprotein complexes, resulting in DNA double-strand breaks(DSBs) and cell death. PARP inhibitors have been approved for the treatment of ovarian cancer for several years and achieved good results. However, with the widespread use of PARP inhibitors, more and more attention has been paid to drug resistance and side effects. Therefore, further research is needed to understand the mechanism of PARP inhibitors, to be familiar with the adverse reactions of the drug, to explore the markers of its efficacy and prognosis, and to deal with its drug resistance. This review elaborates the use of PARP inhibitors in ovarian cancer.


Asunto(s)
Neoplasias de la Mama , Neoplasias Ováricas , Humanos , Femenino , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Reparación del ADN , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico
5.
J Ovarian Res ; 16(1): 86, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120633

RESUMEN

Ovarian cancer (OV), the most fatal gynecological malignance worldwide, has high recurrence rates and poor prognosis. Recently, emerging evidence supports that autophagy, a highly regulated multi-step self-digestive process, plays an essential role in OV progression. Accordingly, we filtered 52 potential autophagy-related genes (ATGs) among the 6197 differentially expressed genes (DEGs) identified in TCGA-OV samples (n = 372) and normal controls (n = 180). Based on the LASSO-Cox analysis, we distinguished a 2-gene prognostic signature, namely FOXO1 and CASP8, with promising prognostic value (p-value < 0.001). Together with corresponding clinical features, we constructed a nomogram model for 1-year, 2-year, and 3-year survival, which was validated in both in training (TCGA-OV, p-value < 0.001) and validation (ICGC-OV, p-value = 0.030) cohorts. Interestingly, we evaluated the immune infiltration landscape through the CIBERSORT algorithm, which indicated the upregulation of 5 immune cells, including CD8 + T cells, Tregs, and Macrophages M2, and high expression of critical immune checkpoints (CTLA4, HAVCR2, PDCD1LG2, and TIGIT) in high-risk group. Stepwise, high-risk group exhibited better sensitivity towards chemotherapies of Bleomycin, Sorafenib, Veliparib, and Vinblastine, though less sensitive to immunotherapy. Especially, based on the IHC of tissue microarrays among 125 patients in our institution, we demonstrated that aberrant upregulation of FOXO1 in OV was related to metastasis and poor prognosis. Moreover, FOXO1 could significantly promote tumor invasiveness, migration, and proliferation in OV cell lines, which was assessed through the Transwell, wound-healing, and CCK-8 assay, respectively. Briefly, the autophagy-related signature was a reliable tool to evaluate immune responses and predict prognosis in the realm of OV precision medicine.


Asunto(s)
Autofagia , Neoplasias Ováricas , Humanos , Femenino , Pronóstico , Autofagia/genética , Neoplasias Ováricas/genética , Nomogramas , Algoritmos , Microambiente Tumoral/genética
6.
Cell Oncol (Dordr) ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082211

RESUMEN

PURPOSE: Ovarian cancer is one of the leading causes of cancer-related death among women. CSGALNACT2 is a vital Golgi transferase and is related to a variety of human diseases. However, its expression pattern and function in ovarian cancer remain uncertain. METHODS: The Cancer Genome Atlas and GEPIA databases were used to assess the expression of CSGALNACT2 in ovarian cancer patients. RNA-seq, qRT-PCR, and IHC were used to verify the expression of CSGALNACT2 in ovarian cancer tissues. Then, in vivo and in vitro experiments were conducted to evaluate the role of CSGALNACT2 in the progression of ovarian cancer. RNA-seq and GSEA were used to reveal the potential biological function and oncogenic pathways of CSGALNACT2. RESULTS: We demonstrated that the mRNA expression and protein level of CSGALNACT2 were significantly downregulated in ovarian cancer and ovarian cancer metastatic tissues. CSGALNACT2 can significantly inhibit the migration, invasion, and clonogenic growth of ovarian cancer in vitro and is progressively lost during ovarian cancer progression in vivo. CSGALNACT2 suppresses ovarian cancer migration and invasion via DUSP1 modulation of the MAPK/ERK pathway through RNA-seq, KEGG analysis, and Western blotting. Moreover, CSGALNACT2 expression was correlated with immune cell infiltration and had prognostic value in different immune cell-enriched or decreased ovarian cancer. In addition, patients with CSGALNACT2 downregulation are less likely to benefit from immunotherapy. CONCLUSION: As an ovarian cancer suppressor gene, CSGALNACT2 inhibits the development of ovarian cancer, and it might be used as a prognostic biomarker in patients with ovarian cancer.

7.
Front Genet ; 13: 1069673, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685892

RESUMEN

Background: Tumor pathology can assess patient prognosis based on a morphological deviation of tumor tissue from normal. Digitizing whole slide images (WSIs) of tissue enables the use of deep learning (DL) techniques in pathology, which may shed light on prognostic indicators of cancers, and avoid biases introduced by human experience. Purpose: We aim to explore new prognostic indicators of ovarian cancer (OC) patients using the DL framework on WSIs, and provide a valuable approach for OC risk stratification. Methods: We obtained the TCGA-OV dataset from the NIH Genomic Data Commons Data Portal database. The preprocessing of the dataset was comprised of three stages: 1) The WSIs and corresponding clinical data were paired and filtered based on a unique patient ID; 2) a weakly-supervised CLAM WSI-analysis tool was exploited to segment regions of interest; 3) the pre-trained model ResNet50 on ImageNet was employed to extract feature tensors. We proposed an attention-based network to predict a hazard score for each case. Furthermore, all cases were divided into a high-risk score group and a low-risk one according to the median as the threshold value. The multi-omics data of OC patients were used to assess the potential applications of the risk score. Finally, a nomogram based on risk scores and age features was established. Results: A total of 90 WSIs were processed, extracted, and fed into the attention-based network. The mean value of the resulting C-index was 0.5789 (0.5096-0.6053), and the resulting p-value was 0.00845. Moreover, the risk score showed a better prediction ability in the HRD + subgroup. Conclusion: Our deep learning framework is a promising method for searching WSIs, and providing a valuable clinical means for prognosis.

8.
Front Oncol ; 12: 975703, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212430

RESUMEN

Background: Ovarian cancer (OC) is the most lethal gynecological malignancy, with limited early screening methods and poor prognosis. Artificial intelligence technology has made a great breakthrough in cancer diagnosis. Purpose: We aim to develop a specific interpretable machine learning (ML) prediction model for the diagnosis and prognosis of epithelial ovarian cancer (EOC) based on a variety of biomarkers. Methods: A total of 521 patients with EOC and 144 patients with benign gynecological diseases were enrolled including derivation datasets and an external validation cohort. The predicted information was acquired by 9 supervised ML methods, through 34 parameters. Behind predicted reasons for the best ML were improved by using the SHapley Additive exPlanations (SHAP) algorithm. In addition, the prognosis of EOC was analyzed by unsupervised clustering and Kaplan-Meier (KM) survival analysis. Results: ML technology was superior to conventional logistic regression in predicting EOC diagnosis and XGBoost performed best in the external validation datasets. The AUC values of distinguishing EOC and benign disease patients, determining pathological type, grade and clinical stage were 0.958 (0.926-0.989), 0.792 (0.701-0.8834), 0.819 (0.687-0.950) and 0.68 (0.573-0.788) respectively. For negative CA-125 EOC patients, the AUC performance of XGBoost model was 0.835(0.763-0.907). We used unsupervised cluster analysis to identify EOC subgroups with significantly poor overall survival (p-value <0.0001) and recurrence-free survival (p-value <0.0001). Conclusions: Based on the preoperative characteristics, we proved that ML algorithm can provide an acceptable diagnosis and prognosis prediction model for EOC patients. Meanwhile, SHAP analysis can improve the interpretability of ML models and contribute to precision medicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA