RESUMEN
PURPOSE: According to the American College of Medical Genetics and Genomics/Association of Medical Pathology (ACMG/AMP) guidelines, in silico evidence is applied at the supporting strength level for pathogenic (PP3) and benign (BP4) evidence. Although PP3 is commonly used, less is known about the effect of these criteria on variant classification outcomes. METHODS: A total of 727 missense variants curated by Clinical Genome Resource expert groups were analyzed to determine how often PP3 and BP4 were applied and their impact on variant classification. The ACMG/AMP categorical system of variant classification was compared with a quantitative point-based system. The pathogenicity likelihood ratios of REVEL, VEST, FATHMM, and MPC were calibrated using a gold standard set of 237 pathogenic and benign variants (classified independent of the PP3/BP4 criteria). RESULTS: The PP3 and BP4 criteria were applied by Variant Curation Expert Panels to 55% of missense variants. Application of those criteria changed the classification of 15% of missense variants for which either criterion was applied. The point-based system resolved borderline classifications. REVEL and VEST performed best at a strength level consistent with moderate evidence. CONCLUSION: We show that in silico criteria are commonly applied and often affect the final variant classifications. When appropriate thresholds for in silico predictors are established, our results show that PP3 and BP4 can be used at a moderate strength.
Asunto(s)
Variación Genética , Genoma Humano , Humanos , Pruebas Genéticas/métodos , Variación Genética/genética , Genómica/métodosRESUMEN
Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.
Asunto(s)
Bases de Datos Genéticas , Humanos , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/clasificación , Medicina de Precisión/métodos , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: Identification of clinically significant genetic alterations involved in human disease has been dramatically accelerated by developments in next-generation sequencing technologies. However, the infrastructure and accessible comprehensive curation tools necessary for analyzing an individual patient genome and interpreting genetic variants to inform healthcare management have been lacking. RESULTS: Here we present the ClinGen Variant Curation Interface (VCI), a global open-source variant classification platform for supporting the application of evidence criteria and classification of variants based on the ACMG/AMP variant classification guidelines. The VCI is among a suite of tools developed by the NIH-funded Clinical Genome Resource (ClinGen) Consortium and supports an FDA-recognized human variant curation process. Essential to this is the ability to enable collaboration and peer review across ClinGen Expert Panels supporting users in comprehensively identifying, annotating, and sharing relevant evidence while making variant pathogenicity assertions. To facilitate evidence-based improvements in human variant classification, the VCI is publicly available to the genomics community. Navigation workflows support users providing guidance to comprehensively apply the ACMG/AMP evidence criteria and document provenance for asserting variant classifications. CONCLUSIONS: The VCI offers a central platform for clinical variant classification that fills a gap in the learning healthcare system, facilitates widespread adoption of standards for clinical curation, and is available at https://curation.clinicalgenome.org.
Asunto(s)
Variación Genética , Genoma Humano , Humanos , Pruebas Genéticas , GenómicaRESUMEN
As genetic sequencing costs decrease, the lack of clinical interpretation of variants has become the bottleneck in using genetics data. A major rate limiting step in clinical interpretation is the manual curation of evidence in the genetic literature by highly trained biocurators. What makes curation particularly time-consuming is that the curator needs to identify papers that study variant pathogenicity using different types of approaches and evidences-e.g. biochemical assays or case control analysis. In collaboration with the Clinical Genomic Resource (ClinGen)-the flagship NIH program for clinical curation-we propose the first machine learning system, LitGen, that can retrieve papers for a particular variant and filter them by specific evidence types used by curators to assess for pathogenicity. LitGen uses semi-supervised deep learning to predict the type of evi+dence provided by each paper. It is trained on papers annotated by ClinGen curators and systematically evaluated on new test data collected by ClinGen. LitGen further leverages rich human explanations and unlabeled data to gain 7.9%-12.6% relative performance improvement over models learned only on the annotated papers. It is a useful framework to improve clinical variant curation.